
 

 

 

equator

G
re

en
wi

ch
Z

a a

b

O
φ

•

•
•

•

H

P
Q

λ

NGEOMETRIC

GEODESY
PART B

R.E. DEAKIN and M.N. HUNTER
School of Mathematical and Geospatial Sciences

RMIT University

Melbourne, AUSTRALIA

January 2010  

 

  



RMIT University Geospatial Science 

 i 

 
 

FOREWORD 
 

These notes are the second part of an introduction to ellipsoidal geometry related to 

geodesy.  They are mainly concerned with the computation of distance and direction 

between points on a reference ellipsoid.  The Earth's terrestrial surface is highly irregular 

and unsuitable for any mathematical computations, instead an ellipsoid – a surface of 

revolution created by rotating an ellipse about its minor axis – is adopted and points on 

the Earth's surface are projected onto the ellipsoid, via a normal to the ellipsoid.  All 

computations are made using these projected points on this reference ellipsoid. 

These notes are intended for undergraduate students studying courses in surveying, 

geodesy and map projections.  The derivations of equations given herein are detailed, and 

in some cases elementary, but they do convey the vital connection between geodesy and 

the mathematics taught to undergraduate students. 

These notes are a collection of papers written by the authors on the topic of computation 

of distance and azimuth between points on the reference ellipsoid.  There are five lines or 

curves of interest in geodesy: the geodesic which is the curve of shortest length; the normal 

section curve; the curve of alignment; the great elliptic arc; and the loxodrome.  The most 

important is of course the geodesic since it is the shortest distance between two points, but 

the other curves have their uses in navigation (the loxodrome) and in field surveying 

(normal section and curve of alignment). 

The methods of computation outlined in these papers have been developed with the 

computer in mind – perhaps with the exception of F. W. Bessel's paper of 1826 – and most 

have MATLAB functions that demonstrate the application of the methods. 

There is a certain amount of repetition in the papers as they are separate documents 

intended to give the reader an overview of the particular geodetic problem and then a 

detailed solution with computer examples of algorithms.  So the student will see repeated 

treatments of the ellipsoid and associated formula as well as various solutions of the direct 

and inverse problems of geodesy.  But, there may be something useful within the detail for 

the interested reader. 
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The calculation of longitude and latitude from geodesic measurements∗

F. W. Bessel

Königsberg Observatory

(Originally published: October 1825; translated: August 13, 2009)

1. INTRODUCTION

Consider a geodesic line between two pointsA andB on
the surface of the Earth. Given the position ofA, the length of
the line and its azimuth atA, we wish to determine the posi-
tion of B and the azimuth of the line there. This problem oc-
curs so frequently that I undertook to construct tables to sim-
plify the computation. In order to explain the method clearly, I
start by deriving the fundamental properties of geodesic lines
on a spheroid of revolution. Even though aspects of this
derivation may already be well known, the benefit of having
the entire development presented together outweighs the cost
of repeating it.1

2. THE CHARACTERISTIC EQUATION FOR A GEODESIC

Take two pointsA and B on the surface on a spheroid2

of revolution joined by some specified curve. Consider two
neighboring points on the curve with latitudesφ andφ + dφ
and longitudes relative toA of w andw + dw (measuring east
positive). Let the distance between them beds, the azimuth of
line directed towardA beα (measured clockwise from north),

∗This is an English translation of̈Uber die Berechnung der geographischen
Längen und Breiten aus geodätischen Vermessungen, Astronomische Nach-
richten 4(86), 241–254 (1826), doi:10.1002/asna.18260041601. Thepaper
also appears inAbhandlungen von Friedrich Wilhelm Bessel, Vol. 3, pp. 5–
14 (W. Engelmann, Leipzig, 1876). The translation has been prepared and
edited by Charles F. F. Karney〈ckarney@sarnoff.com〉 and Rodney E. Deakin
〈rod.deakin@rmit.edu.au〉, with the assistance of Max Hunter and Stephan
Brunner. The mathematical notation has been updated to conform to cur-
rent conventions and, in a few places, the equations have been rearranged
for clarity. Several errors have been corrected, a figure hasbeen included,
and the tables have been recomputed. A transcription of the original paper
with the updated mathematical notation and with the corrections is available
at arXiv:0908.1823. A contemporary, but partial, translation into English ap-
peared in Quart. Jour. Roy. Inst.21(41), 138–152 (1826).
1 In Secs. 2–4, Bessel gives a concise summary of the work of several other

authors, notably, Clairaut, du Séjour, Legendre, and Oriani. Bessel’s con-
tributions, which start in Sec. 5, consist of his methods forexpanding the
distance and longitude integrals and his compilation of tables to provide a
practical method for computing geodesics. Two sentences have been omit-
ted from this translation of the introduction. In one, Bessel refers to two
letters he published earlier in theAstronomische Nachrichtenwhich do not,
however, have a direct bearing on the present work. In the other, he criti-
cizes ”du Séjour’s method,” but without providing details; in any case, such
criticism is misplaced because du Séjour had died over 30 years earlier and
Bessel does not cite more recent work.

2 “Spheroid” here is used in the sense of a shape approximatinga sphere.
Sections 2 and 3 treat the case of a rotationally symmetric earth. In Sec. 4,
Bessel specializes to a rotationally symmetric ellipsoid.

the radius of the circle of latitude ber, and the meridional
radius of curvature byR; then we find3

ds cosα = −R dφ =
dr

sin φ
,

ds sin α = −r dw,

(1)

which gives

ds =
√

R2 dφ2 + r2 dw2.

If we writep for dφ/dw andU for
√

R2p2 + r2, this becomes

ds = U dw.

The distance along the curve between the two pointsA andB
is therefore

s =

∫

U dw,

where the integration is fromA to B. If the curve is the
geodesic orshortestpath, then the relation betweenφ andw
must be such that the integral is a minimum. If we perturb this
relation so thatφ is replaced byφ + z wherez is an arbitrary
function ofw which vanishes at the end points (because these
points lie on both curves), then the perturbed length,

s′ =

∫

U ′ dw,

must be larger thans for all z.
ExpandingU(φ, p) in a Taylor series, we obtain4

U ′ = U +
∂U

∂φ
z +

∂U

∂p

dz

dw
+ . . .

and therefore we have

s′ = s +

∫
(

∂U

∂φ
z +

∂U

∂p

dz

dw

)

dw + . . . ,

where we have explicitly included terms only up to first order
in z. Fors to be a minimum, we require that

∫
(

∂U

∂φ
z +

∂U

∂p

dz

dw

)

dw + . . . ≥ 0

3 The minus signs appear in (1) becauseα is the back azimuth, pointing to
A, while ds advances the geodesic away fromA. In this section, Bessel
assumes an easterly geodesic so thatds/dw > 0. However the final result,
Eq. (2), is general.

4 The notation here employs partial derivatives instead of Bessel’s less for-
mal use of differentials.

http://arxiv.org/abs/0908.1824v1
http://adsabs.harvard.edu/full/1826AN......4..241B
http://adsabs.harvard.edu/full/1826AN......4..241B
http://dx.doi.org/10.1002/asna.18260041601
http://books.google.com/books?id=vX4EAAAAYAAJ&pg=PA5
mailto:ckarney@sarnoff.com
mailto:rod.deakin@rmit.edu.au
http://arxiv.org/abs/0908.1823
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for all z. Since this must also hold ifz is replaced by−z
and since we can takez so small that the first order terms are
bigger that the sum of all the higher order terms (except if the
first order terms vanish), it follows that the condition thats be
minimum is

∫
(

∂U

∂φ
z +

∂U

∂p

dz

dw

)

dw = 0.

Integrating the second term by parts to givez(∂U/∂p) −
∫

z[d(∂U/∂p)/dw] dw and remembering thatz vanishes at
the end points, we obtain

∫

z

{

∂U

∂φ
−

d

dw

(

∂U

∂p

)}

dw = 0.

Since this integral must vanish forarbitrary z, we find5

∂U

∂φ
−

d

dw

(

∂U

∂p

)

= 0

or, multiplying bydφ/dw = p,

∂U

∂φ

dφ

dw
+

∂U

∂p

dp

dw
−

dp

dw

∂U

∂p
− p

d

dw

(

∂U

∂p

)

= 0,

which on integrating with respect tow becomes6

U − p

(

dU

dp

)

= const.

Substituting
√

r2 + R2p2 for U , we obtain7

r
√

1 + (R2/r2)p2
= −r sin α = const.,

which is the well known characteristic equation of the geo-
desic.

If the azimuth of the geodesic atA (in the direction ofB) is
α′ and the distance ofA from the rotation axis isr′, we have

r′ sin(α′ + 180◦) = r sin α,

or

r′ sin α′ = −r sin α. (2)

3. THE AUXILIARY SPHERE

Let the maximum distance of the spheroid to the rotation
axis bea, so thatr andr′ are less than or equal toa; we can
then write8

r′ = a cosu′, r = a cosu,

5 This is the Euler-Lagrange equation of the calculus of variations.
6 This is now known as the Beltrami identity.
7 A. C. Clairaut gives a geometric derivation of this result inMém. de

l’Acad. Roy. des Sciences de Paris, 1733, 406–416 (1735). The equation
also follows from conservation of angular momentum for a mass sliding
without friction on a spheroid of revolution.

8 The quantityu is thereducedor parametriclatitude.

 m

360° − α

α′
σ

 u

 u′

90°

ω

 M

E
F

G

N

A

B

Figure 1 Spherical triangles on the auxiliary sphere.EAB is the
geodesic,N is the pole;EFG is the equator; andNE, NAF , and
NBG are meridians.

and equation (2) becomes

cosu′ sinα′ = − cosu sinα. (3)

This equation relates two sides of a spherical triangle,9 90◦−
u′ and90◦ − u, and their opposite angles,360◦ − α andα′.
The third sideσ and its opposite angleω will appear in the
following calculations giving elegant expressions for thejoint
variations ofs, u andw. In particular, using the well known
differential formulas of spherical trigonometry, we find10

du = − cosα dσ,

cosu dω = − sinα dσ.

Substituting these in equations (1) and expressingr in terms
of u gives

ds = a
sin u

sin φ
dσ,

dw =
sin u

sin φ
dω.

(4)

4. THE EQUATIONS FOR A GEODESIC ON AN ELLIPSOID

I now assume that the meridian is an ellipse with equa-
torial semi-axisa, polar semi-axisb, and eccentricitye =√

a2 − b2/a.11 The equation for an ellipse expressed in terms

9 See the triangleABN on the “auxiliary sphere” in Fig. 1; Equation (3) is
the sine rule applied to anglesA andB of the triangle.

10 Here and in the rest of the paper, the differentials give the movement of
pointB along the geodesic defined with pointA andα′ held fixed.

11 In Bessel’s time, it was known that the earth could be approximated by an
oblate ellipsoid,a > b, but the eccentricity had not been determined ac-
curately. Therefore, Bessel computes tables which are applicable to oblate
ellipsoids with a range of eccentricities. However, the series expansions
that Bessel obtains, (11) and (12), can also to applied to prolate ellipsoids,
a < b, by allowinge2 < 0.

http://books.google.com/books?id=GOAEAAAAQAAJ&pg=RA1-PA406
http://books.google.com/books?id=GOAEAAAAQAAJ&pg=RA1-PA406
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of cartesian coordinates is

x2

a2
+

y2

b2
= 1.

Differentiating this and settingdy/dx = − cotφ, we obtain

x sin φ

a2
−

y cosφ

b2
= 0;

eliminatingy between these equations then gives

x =
a cosφ

√

1 − e2 sin2 φ
.

The quantityx is the same asr = a cosu, which gives the
relationships betweenφ andu,

cosu =
cosφ

√

1 − e2 sin2 φ
, cosφ =

cosu
√

1 − e2

√
1 − e2 cos2 u

,

sinu =
sin φ

√
1 − e2

√

1 − e2 sin2 φ
, sin φ =

sin u
√

1 − e2 cos2 u
,

tanu = tanφ
√

1 − e2, tan φ =
tanu

√
1 − e2

,

and
sin u

sin φ
=
√

1 − e2 cos2 u.

Substituting this into (4), we obtain the differential equations
for a geodesic on an ellipsoid

ds = a
√

1 − e2 cos2 u dσ,

dw =
√

1 − e2 cos2 u dω.
(5)

5. THE DISTANCE INTEGRAL

To integrate the first of these differential equations, I use
the three relations betweenu′, u, α′, α andσ,12

sin u = sin u′ cosσ + cosu′ cosα′ sin σ,

− cosu cosα = − sinu′ sin σ + cosu′ cosα′ cosσ,

− cosu sinα = cosu′ sinα′.

(6)

It is convenient to write these in terms of the auxiliary angles
m andM defined by13

sinu′ = cosm sinM,

cosu′ cosα′ = cosm cosM,

cosu′ sinα′ = sin m.

(7)

12 Referring to Fig. 1, consider two central cartesian coordinate systems with
the xy plane containing the geodesicEAB, and eitherA or B lying on
the x axis. Equations (6) give the transformation between the coordi-
nates ofN in the two systems,[sinu′, cos u′ cos α′, cos u′ sinα′] and
[sinu,− cos u cos α,− cos u sinα], namely a rotation byσ about thez
axis.

13 The auxiliary anglesm andM are an angle and a side of the spherical
triangleEAN shown in Fig. 1. Equations (7) are the sine rule on anglesE
andF of triangleAEF , the cosine rule on angleF of triangleAEF , and
the sine rule on anglesA andE of triangleANE.

Equations (6) then become14

sin u = cosm sin(M + σ),

cosu cosα = − cosm cos(M + σ),

cosu sinα = − sin m.

(8)

This gives

cos2 u = 1 − cos2 m sin2(M + σ),

and the equation fords becomes

ds = a
√

1 − e2

√

1 + k2 sin2(M + σ) dσ, (9)

where

k =
e cosm
√

1 − e2
.

This differential equation may be integrated in terms of the
elliptic integrals introduced by Legendre.15 Because the tools
to compute these special functions are not yet sufficiently ver-
satile,16 we instead develop a series solution which converges
rapidly becausee2 is so small. We readily achieve this by de-
composing the term under the square root into two complex
factors, namely17

ds = a

√
1 − e2

1 − ǫ
dσ×

√

1 − ǫ exp
(

2i(M + σ)
)

√

1 − ǫ exp
(

−2i(M + σ)
)

,

where

ǫ =

√
1 + k2 − 1

√
1 + k2 + 1

, k =
2
√

ǫ

1 − ǫ
.

Expanding the two factors in the radicals in infinite series and
multiplying the results gives18

ds = a

√
1 − e2

1 − ǫ
dσ
[

A − 2B cos 2(M + σ)

− 2C cos 4(M + σ) − 2D cos 6(M + σ) − . . .
]

,

14 These are analogs of Eqs. (7) with meridianNAF replaced byNBG.
15 A. M. Legendre, Exercices du calcul intégral, Vol. 1 (Courcier, Paris,

1811).
16 Even though good numerical algorithms for elliptic integrals are available,

these usually require linking to an additional library and,for that reason,
computations of geodesics are still usually in terms of a series.

17 The notation has been simplified here compared to Bessel’s original for-
mulation in whichk andǫ are expressed in terms ofE throughk = tan E
andǫ = tan2 1

2
E. By usingǫ as the expansion parameter and by dividing

out the factor1 − ǫ, Bessel has ensured that the terms that he is expanding
are invariant under the transformationǫ → −ǫ, M+σ → π/2−(M+σ).
This symmetry causes half the terms in the expansions inǫ to vanish.

18 The use of complex exponentials facilitates the series expansions by avoid-
ing the need to employ awkward trigonometric identities. Ifwe write√

1 − x = 1− 1

2
x − 1·1

2·4
x2 − 1·1·3

2·4·6
x3 − 1·1·3·5

2·4·6·8
x4 − . . . =

P

j ajxj ,

then the coefficient ofcos
`

2l(M +σ)
´

ǫl+2j is a2
j for l = 0 and2ajaj+l

for l > 0.

http://books.google.com/books?id=riIOAAAAQAAJ&printsec=titlepage
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whereA, B, C, . . . are given by

A = 1 +

(

1

2

)2

ǫ2 +

(

1·1
2·4

)2

ǫ4 +

(

1·1·3
2·4·6

)2

ǫ6 + . . . ,

B =
1

2
ǫ −

1·1
2·4

1

2
ǫ3 −

1·1·3
2·4·6

1·1
2·4

ǫ5

−
1·1·3·5
2·4·6·8

1·1·3
2·4·6

ǫ7 − . . . ,

C =
1·1
2·4

ǫ2 −
1·1·3
2·4·6

1

2
ǫ4 −

1·1·3·5
2·4·6·8

1·1
2·4

ǫ6

−
1·1·3·5·7
2·4·6·8·10

1·1·3
2·4·6

ǫ8 − . . . ,

D =
1·1·3
2·4·6

ǫ3 −
1·1·3·5
2·4·6·8

1

2
ǫ5 −

1·1·3·5·7
2·4·6·8·10

1·1
2·4

ǫ7

−
1·1·3·5·7·9

2·4·6·8·10·12
1·1·3
2·4·6

ǫ9 − . . . ,

etc.

Integrating the equation fords starting atσ = 0, we obtain

s =
b

1 − ǫ

[

Aσ − 2
1B cos(2M + σ) sin σ

− 2
2C cos(4M + 2σ) sin 2σ

− 2
3D cos(6M + 3σ) sin 3σ

− . . .
]

. (10)

6. SOLVING THE DISTANCE EQUATION

The series (10) gives the distances betweenA andB in
terms of u′, α′, and σ; if, however, s and α′ have been
measured andu′ is known from the latitude atA, then σ
is obtained by solving (10). The latitude ofB and the az-
imuth of the geodesic there are found from (8). Equation (10)
can be solved either by reverting the series or by successive
approximation—the latter way is however the simplest if the
tables I have compiled are used.

I write19

σ =
α

b
s+β cos(2M +σ) sin σ+γ cos(4M +2σ) sin 2σ

+ δ cos(6M + 3σ) sin 3σ + . . . , (11)

where

α =
648 000

π

1 − ǫ

A
,

β =
648 000

π

2B

A
,

γ =
648 000

π

C

A
,

δ =
648 000

π

2D

3A
,

etc.

19 The units forσ, α, β, . . . are arc seconds. Bessel here adopts a conflict-
ing notation for the coefficientα which should not be confused with the
azimuth.

The tables give the logarithms20 of α, β, andγ as a function
of the argument

log k = log
e cosm
√

1 − e2
.

By this choice, the variation oflog β andlog γ are very close
to two and four times that of the argument, which simplifies
interpolation into the table.21

We takeαs/b as the first approximation ofσ, substitute this
into the second term to obtain a second approximation, with
which we recalculate the second term and add the third. The
convergence of the series is sufficiently fast that, even if the
argument is̄1.1 (which is only possible if the flattening of
the ellipsoid,1 − b/a, exceeds 1

128 ), the approximation never
needs to be carried further in order to keep the errors inσ
under0.001′′. The term involvingδ does not exceed0.0005′′

at this value of the argument.

7. ACCURACY OF THE TABLES

The values oflog α in the table are given to 8 decimal
places.22 An error of half a unit of the last place results in
an error of only0.0005′′ or 0.008 toise over a distance corre-
sponding toσ = 12◦4′ or 700 000 toises.23 Similarly, I retain
only sufficient digits in the tabulation oflog β to ensure that
the error in this term is less than0.0005′′; for this purpose, I
use 6 digits at the end of the table and fewer digits for smaller
values of the argument. The third term never exceeds0.17′′,
even at the end of the table; therefore I include only 3 decimal
places forlog γ. Thus the errors are0.001′′ for distances up to
700 000 toises; even if the distance is of the order of a quarter
meridian (i.e.,σ = 90◦), the error is less than0.01′′.

8. AN EXAMPLE

In order to illustrate the use of the tables, I consider the
results from the great survey by von Müffling.24 Relative to

20 In this paper,log x denotes the common logarithm (base 10) and we use
colog x = log(1/x). The tables in the original paper contained a number
of errors of one unit in the last place. These errors do not, for the most
part, affect the results obtained from the tables when rounded to0.001′′ .
In addition, there were systematic errors in the tabulated values oflog β
equivalent to a relative error of orderǫ2 in β which result in discrepancies
from 1 to 17 units in the last place on the final page (the 6-figure portion)
of the tables. In calculations involving logarithms, a bar over a numeral
indicates that that numeral should be negated, e.g.,log 0.02 ≈ 2̄.3 =
(−2) + 0.3. In the original paper, logarithms are written modulo 10, e.g.,
log 0.02 ≈ 8.3. The notation “(−)” in these calculations indicates that the
quantity whose logarithm is being taken is negative.

21 The columns headed∆ give the first differences of the immediately pre-
ceding columns and aid in interpolating the data. Bessel would have used
a table of “proportional parts” to compute the interpolatedvalues.

22 Working with 8-figure logarithms provides about 2 bits more precision than
IEEE single precision floating point numbers.

23 The toise was a French unit of length. It can be converted to meters by
1 toise = 864 ligne, 443.296 ligne = 1m, or 1 toise ≈ 1.949m.

24 F. K. F. von Müffling, Astron. Nachr.2(27), 33–38 (1824).

http://articles.adsabs.harvard.edu/full/1824AN......2...33V
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Seeberg (pointA), the distance and azimuth to Dunkirk (point
B) are25

log s = 5.478 303 14,

α′ = 274◦ 21′ 3.18′′.

I assume the latitude of the Observatory at Seeberg to be
φ′ = 50◦ 56′ 6.7′′ and the ellipsoid parameters to belog b =
6.513 354 64, log e = 2̄.905 4355.26

Fromtanu′ =
√

1 − e2 tan φ′, we find

log tanφ′ = 0.090 626 65

log
√

1 − e2 = 1̄.998 590 60

log tanu′ = 0.089 217 25; u′ = 50◦ 50′ 39.057′′.

Givenu′ andα′, we can computeM , cosm andsin m from
equations (7):27

log sinu′ = 1̄.889 543 51

log cosu′ = 1̄.800 326 27

log cosα′ = 2̄.880 037 33

log sinα′ = 1̄.998 746 62(−)

log(cos m sinM) = 1̄.889 543 51

log(cos m cosM) = 2̄.680 363 60

log sin m = 1̄.799 072 89(−)

M = 86◦ 27′ 53.949′′; 2M = 172◦ 55′ 47.9′′

log cosm = 1̄.890 370 63 4M = 345◦ 51′ 36′′.

The argument in the tables,log
(

(e/
√

1 − e2) cosm
)

, is

log
e

√
1 − e2

= 2̄.906 845

log cosm = 1̄.890 371

Argument = 2̄.797 216.

Looking uplog α in the tables, and calculatingαs/b gives28

log α = 5.313 998 92

colog b = 7̄.486 645 36

log s = 5.478 303 14

log
αs

b
= 4.278 947 42;

α

b
s = 5◦ 16′ 48.481′′.

25 Seeberg:50◦56′N 10◦44′E; Dunkirk: 51◦2′N 2◦23′E.
26 In present-day units, this isa ≈ 6377 km, flatteningf ≈ 1/308.6, s ≈

586 km. In this example, Bessel uses the toise as the unit of length and the
second as the unit of arc.

27 Bessel solves 3 equations (7) for 2 unknownsM andm. The redundancy
serves as a check for the hand calculation and can also improve the accu-
racy of the calculation, for example, in the case wheresinm ≈ 1.

28 It is necessary to use second differences when interpolating in the table for
log α. The argument,̄2.797 216, lies q = 0.7216 of the way between
2̄.79 and2̄.80. Bessel’s central 2nd-order interpolation formula for thelast
6 digits oflog α gives401 284+q(−1941)+ 1

4
q(q−1)(1853−1004−

1028) = 399 892. For the other table look-ups, linear interpolation using
first differences suffices.

Adopting this as the first approximation to the value ofσ, we
obtain the second by adding the first term in the series (11),

log β = 2.305 94

log cos(2M + σ) = 1̄.999 79(−)

log sin σ = 2̄.963 91

1.269 64(−) = −18.61′′.

We now update the value of this term with the second approx-
imation ofσ = 5◦ 16′ 48.5′′ − 18.6′′ = 5◦ 16′ 29.9′′ and so
obtain as the third approximation:

log β = 2.305 94

log cos(2M + σ) = 1̄.999 79(−)

log sin σ = 2̄.963 48

1.269 21(−) = −18.587′′,

log γ = 2̄.394

log cos(4M + 2σ) = 1̄.999

log sin 2σ = 1̄.263

3̄.656 = +0.005′′.

Gathering the terms in (11) givesσ = 5◦ 16′ 48.481′′ −
18.587′′ + 0.005′′ = 5◦ 16′ 29.899′′ and so, finally, we de-
termineα, u andφ from equations (8),

M + σ = 91◦ 44′ 23.848′′

log sin(M + σ) = 1̄.999 799 71

log
(

− cos(M + σ)
)

= 2̄.482 349 32

log cosm = 1̄.890 370 63

log(− sin m) = 1̄.799 072 89

log sinu = 1̄.890 170 34

log(cosu cosα) = 2̄.372 719 95

log(cosu sinα) = 1̄.799 072 89

log cotα = 2̄.573 647 06; α = 87◦ 51′ 15.523′′

log cosu = 1̄.799 377 50

log tanu = 0.090 792 84

colog
√

1 − e2 = 0.001 409 40

log tanφ = 0.092 202 24; φ = 51◦ 2′ 12.719′′.

In this example, I carried out the trigonometric calculations to
8 decimals; however the tables oflog α, log β, and log γ in
fact allowα andφ to be determined slightly more accurately
than this. If only standard 7-figure logarithm tables are avail-
able, the last digits in the tabulated values oflog α, log β, and
log γ may be neglected.
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9. THE LONGITUDE INTEGRAL

We turn now to the determination of the longitude differ-
encew by integrating (5),

dw =
√

1 − e2 cos2 udω.

This integral contains two separate constantsm ande, which
cannot be combined. Thus it not possible to construct tablesto
allow a rigorous solution of this problem which are valid for
arbitrarye.29 However, we can achieve our goal by sacrificing
strict rigor and by making an approximation which results in
errors which are inconsequential in our application.

We start by writing

dw = dω −
(

1 −
√

1 − e2 cos2 u
)

dω,

and substitute in the second term

dω =
sin α′ cosu′

cos2 u
dσ.

On integrating, we obtain

w = ω − sin α′ cosu′

∫

1 −
√

1 − e2 cos2 u

cos2 u
dσ.

Let us write

1 −
√

1 − e2 cos2 u

cos2 u
=

e2

2
(1 + e2p cos2 u)q(1 + y);

in other words, we set

1 + y =
2(1 −

√
1 − e2 cos2 u)

e2 cos2 u(1 + e2p cos2 u)q

=
1 + 1

4e2 cos2 u + 1
8e4 cos4 u + 5

64e6 cos6 u + . . .
(

1 + qpe2 cos2 u + q(q−1)
1·2 p2e4 cos4 u

+ q(q−1)(q−2)
1·2·3 p3e6 cos6 u + . . .

) .

The first three terms in the denominator and in the numerator
are equal, provided that

p = − 3
4 , q = − 1

3 ,

which gives

1 + y =
1 + 1

4e2 cos2 u + 1
8e4 cos4 u + 5

64e6 cos6 u + . . .

1 + 1
4e2 cos2 u + 1

8e4 cos4 u + 7
96e6 cos6 u + . . .

= 1 + 1
192e6 cos6 u + . . .

29 As a practical matter, it would have been impossible for Bessel to provide
a complete tabulation of a function of two parameters. He could have tab-
ulated the function for a fixed value ofe, which would greatly reduced
the utility of his method, especially given the uncertainties in the measure-
ments ofe. Instead, Bessel manipulates the expression fordw to move
the dependence on the second parameter into a small term thatmay be
neglected.

From this, we see that neglectingy results in an error of or-
der e8 or an error inw of 1

384e8σ. This would not be dis-
cernible even in the calculation of long geodesics to 10 deci-
mal places.30

Thus, for the present purposes, we may takey ≈ 0 enabling
us to tabulate the integral in a way that is valid for alle.

10. SERIES EXPANSION FOR LONGITUDE

Introducing this approximation, we have

w ≈ ω −
e2

2
sin m

∫

dσ

3

√

1 − 3
4e2 cos2 u

= ω −
e2

2
sin m

∫

dσ

3

√

1 − 3
4e2 + 3

4e2 cos2 m sin2(M + σ)
.

If we set

k′ =

√
3

4
e cosm

√

1 − 3

4
e2

,

we can express the integral in the second term as
∫

dσ

3

√

1 − 3
4e2 3

√

1 + k′2 sin2(M + σ)
.

Following the same procedure used in expanding the integral
for ds in Sec. 5, we introduceǫ′ defined by31

ǫ′ =

√
1 + k′2 − 1

√
1 + k′2 + 1

, k′ =
2
√

ǫ′

1 − ǫ′
,

and separate the integrand into two complex factors,

∫ 3

√

(1 − ǫ′)2/
(

1 − 3
4e2
)

dσ

3

√

1 − ǫ′ exp
(

2i(M + σ)
)

3

√

1 − ǫ′ exp
(

−2i(M + σ)
)

.

If we expand these in infinite series, the product becomes32

2
3

√

1 − 3

4
e2

∫

(

α′ + β′ cos 2(M + σ) + 2γ′ cos 4(M + σ)

+ 3δ′ cos 6(M + σ) + . . .
)

dσ,

30 For a flattening of 1

128
, the error in the longitude difference over a distance

equivalent to a quarter meridian, i.e.,10 000 km, is less than0.000 05′′.
31 Bessel gives the relationship betweenk′ andǫ′ in terms ofE′, wherek′ =

tan E′ andǫ′ = tan2 1

2
E′.

32 There are a series of errors in the original paper leading up to (12). Here
we assume that the original Eq. (12) definesα′, β′, γ′, . . . , which makes
this equation analogous to (11), and correct the preceding equations to be
consistent.
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where33

α′ = 1
2

3

√

(1 − ǫ′)2
[

1 +

(

1

3

)2

ǫ′2 +

(

1·4
3·6

)2

ǫ′4 + . . .

]

,

β′ = 1
1

3

√

(1 − ǫ′)2
[

1

3
ǫ′ +

1·4
3·6

1

3
ǫ′3 +

1·4·7
3·6·9

1·4
3·6

ǫ′5 + . . .

]

,

γ′ = 1
2

3

√

(1 − ǫ′)2
[

1·4
3·6

ǫ′2 +
1·4·7
3·6·9

1

3
ǫ′4

+
1·4·7·10

3·6·9·12

1·4
3·6

ǫ′6 + . . .

]

,

δ′ = 1
3

3

√

(1 − ǫ′)2
[

1·4·7
3·6·9

ǫ′3 +
1·4·7·10

3·6·9·12

1

3
ǫ′5

+
1·4·7·10·13

3·6·9·12·15

1·4
3·6

ǫ′7 + . . .

]

,

etc.

Integrating fromσ = 0 then gives

w ≈ ω −
e2 sin m
3

√

1 − 3

4
e2

(

α′σ + β′ cos(2M + σ) sin σ

+ γ′ cos(4M + 2σ) sin 2σ

+ δ′ cos(6M + 3σ) sin 3σ + . . .
)

. (12)

11. COMPUTING THE LONGITUDE DIFFERENCE

The first two coefficients of this series are given in the 4th
and 5th columns of the tables34 as functions of the argument

log k′ = log

( √
3

4
e

√

1 − 3

4
e2

cosm

)

.

The convergence is commensurate with the 3 first columns
of the tables. We calculateω using one of the formulas for
spherical triangles (Sec. 3), either35

sin ω =
sin σ sin α′

cosu
=

− sinσ sin α

cosu′
=

sinσ sinm

cosu cosu′
,

or36

tan 1
2ω =

sin 1
2 (u′ − u)

cos 1
2 (u′ + u)

cot 1
2 (α′ + α)

=
cos 1

2 (u′ − u)

sin 1
2 (u′ + u)

cot 1
2 (α′ − α).

33 See footnote 18 and set(1 − x)−1/3 = 1 + 1

3
x + 1·4

3·6
x2 + 1·4·7

3·6·9
x3 +

1·4·7·10

3·6·9·12
x4 + . . .

34 The value ofβ′ in the tables includes the factor of648 000/π necessary to
convert from radians to arc seconds.

35 The first two relations are the sine rule for angleN of triangleABN of
Fig. 1. The last relation is obtained, for example, by substituting for sin α′

from (7).
36 These are Napier’s analogies for angleN of triangleABN .

and evaluatew by means of the tables.
I will continue with the example in Sec. 8 and calculate the

longitude difference between Dunkirk and Seeberg using this
prescription. Solving the spherical triangle forω gives

log sin σ = 2̄.963 483 83

log(− sinα) = 1̄.999 695 39(−)

colog cosu′ = 0.199 673 73

log sin ω = 1̄.162 852 95(−); ω = −8◦ 21′ 57.741′′.

The argument for the last two columns of the tables is
log
(

(
√

3

4
e/
√

1 − 3

4
e2) cosm

)

, giving

log

√
3

4
e

√

1 − 3

4
e2

= 2̄.844 022

log cosm = 1̄.890 371

Argument = 2̄.734 393.

Computing the terms in the series (12) gives

log α′ = 1̄.698 758

log(− sinm) = 1̄.799 073

log
e2

3

√

1 − 3

4
e2

= 3̄.811 575

log σ = 4.278 523

1.587 929 = +38.719′′,

and

log β′ = 1.703

log(− sinm) = 1̄.799

log
e2

3

√

1 − 3

4
e2

= 3̄.812

log
(

cos(2M + σ) sin σ
)

= 2̄.963(−)

2̄.277(−) = −0.019′′.

The sum of both terms is+38.700′′, and adding this toω, we
find the longitude difference,

w = −8◦ 21′ 19.041′′.

12. CONCLUSION

This illustration of the use of these tables shows that the
accuracy of the calculation is limited not by the neglect of
terms of high order in the eccentricity, but by the number of
decimal places included. The steps in the calculation are, for
the most part, the same as for a spherical earth; in order to
account for the earth’s ellipticity one needs, in addition,only
to solve equation (11) and to evaluate the series (12). Since
this approach is sufficiently convenient even for routine use,
it is unnecessary to use an approximate method which is valid
only for small distances.

(The tables are shown on the following pages.)
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TABLES for computing geodesics 1.

Arg log α −∆ log β ∆ log γ ∆ log α′
−∆ log β′ ∆

4̄.4 5.314 425 13 1 3̄.5124 2000 1̄.698 970 0 3̄.035 200

4̄.5 5.314 425 12 0 3̄.7124 2000 1̄.698 970 0 3̄.235 200

4̄.6 5.314 425 12 1 3̄.9124 2000 1̄.698 970 0 3̄.435 200

4̄.7 5.314 425 11 2 2̄.1124 2000 1̄.698 970 0 3̄.635 200

4̄.8 5.314 425 09 3 2̄.3124 2000 1̄.698 970 0 3̄.835 200

4̄.9 5.314 425 06 4 2̄.5124 2000 1̄.698 970 0 2̄.035 200

3̄.0 5.314 425 02 6 2̄.7124 2000 1̄.698 970 0 2̄.235 200

3̄.1 5.314 424 96 10 2̄.9124 2000 1̄.698 970 0 2̄.435 200

3̄.2 5.314 424 86 16 1̄.1124 2000 1̄.698 970 0 2̄.635 200

3̄.3 5.314 424 70 25 1̄.3124 2000 1̄.698 970 0 2̄.835 200

3̄.4 5.314 424 45 40 1̄.5124 2000 1̄.698 970 1 1̄.035 200

3̄.50 5.314 424 05 5 1̄.7124 200 1̄.698 969 0 1̄.235 20

3̄.51 5.314 424 00 6 1̄.7324 200 1̄.698 969 0 1̄.255 20

3̄.52 5.314 423 94 5 1̄.7524 200 1̄.698 969 0 1̄.275 20

3̄.53 5.314 423 89 6 1̄.7724 200 1̄.698 969 0 1̄.295 20

3̄.54 5.314 423 83 6 1̄.7924 200 1̄.698 969 0 1̄.315 20

3̄.55 5.314 423 77 7 1̄.8124 200 1̄.698 969 0 1̄.335 20

3̄.56 5.314 423 70 7 1̄.8324 200 1̄.698 969 0 1̄.355 20

3̄.57 5.314 423 63 7 1̄.8524 200 1̄.698 969 0 1̄.375 20

3̄.58 5.314 423 56 7 1̄.8724 200 1̄.698 969 0 1̄.395 20

3̄.59 5.314 423 49 8 1̄.8924 200 1̄.698 969 0 1̄.415 20

3̄.60 5.314 423 41 8 1̄.9124 200 1̄.698 969 0 1̄.435 20

3̄.61 5.314 423 33 8 1̄.9324 200 1̄.698 969 0 1̄.455 20

3̄.62 5.314 423 25 9 1̄.9524 200 1̄.698 969 0 1̄.475 20

3̄.63 5.314 423 16 10 1̄.9724 200 1̄.698 969 0 1̄.495 20

3̄.64 5.314 423 06 9 1̄.9924 200 1̄.698 969 0 1̄.515 20

3̄.65 5.314 422 97 11 0.0124 200 1̄.698 969 1 1̄.535 20

3̄.66 5.314 422 86 10 0.0324 200 1̄.698 968 0 1̄.555 20

3̄.67 5.314 422 76 11 0.0524 200 1̄.698 968 0 1̄.575 20

3̄.68 5.314 422 65 12 0.0724 200 1̄.698 968 0 1̄.595 20

3̄.69 5.314 422 53 12 0.0924 200 1̄.698 968 0 1̄.615 20

3̄.70 5.314 422 41 13 0.1124 200 1̄.698 968 0 1̄.635 20

3̄.71 5.314 422 28 14 0.1324 200 1̄.698 968 0 1̄.655 20

3̄.72 5.314 422 14 14 0.1524 200 1̄.698 968 0 1̄.675 20

3̄.73 5.314 422 00 15 0.1724 200 1̄.698 968 0 1̄.695 20

3̄.74 5.314 421 85 15 0.1924 200 1̄.698 968 0 1̄.715 20

3̄.75 5.314 421 70 16 0.2124 200 1̄.698 968 0 1̄.735 20

3̄.76 5.314 421 54 17 0.2324 200 1̄.698 968 1 1̄.755 20

3̄.77 5.314 421 37 18 0.2524 200 1̄.698 967 0 1̄.775 20

3̄.78 5.314 421 19 18 0.2724 200 1̄.698 967 0 1̄.795 20

3̄.79 5.314 421 01 20 0.2924 200 1̄.698 967 0 1̄.815 20

3̄.80 5.314 420 81 20 0.3124 200 1̄.698 967 0 1̄.835 20

3̄.81 5.314 420 61 22 0.3324 200 1̄.698 967 0 1̄.855 20

3̄.82 5.314 420 39 22 0.3524 200 1̄.698 967 0 1̄.875 20

3̄.83 5.314 420 17 23 0.3724 200 1̄.698 967 0 1̄.895 20

3̄.84 5.314 419 94 25 0.3924 200 1̄.698 967 1 1̄.915 20

3̄.85 5.314 419 69 25 0.4124 200 1̄.698 966 0 1̄.935 20

3̄.86 5.314 419 44 27 0.4324 200 1̄.698 966 0 1̄.955 20

3̄.87 5.314 419 17 28 0.4524 200 1̄.698 966 0 1̄.975 20

3̄.88 5.314 418 89 30 0.4724 200 1̄.698 966 0 1̄.995 20

3̄.89 5.314 418 59 31 0.4924 200 1̄.698 966 1 0.015 20

3̄.90 5.314 418 28 0.5124 1̄.698 965 0.035
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TABLES for computing geodesics 2.

Arg log α −∆ log β ∆ log γ ∆ log α′
−∆ log β′ ∆

3̄.90 5.314 418 28 32 0.512 35 2000 1̄.698 965 0 0.035 20

3̄.91 5.314 417 96 34 0.532 35 2000 1̄.698 965 0 0.055 20

3̄.92 5.314 417 62 35 0.552 35 2000 1̄.698 965 0 0.075 20

3̄.93 5.314 417 27 37 0.572 35 2000 1̄.698 965 0 0.095 20

3̄.94 5.314 416 90 39 0.592 35 2000 1̄.698 965 1 0.115 20

3̄.95 5.314 416 51 41 0.612 35 2000 1̄.698 964 0 0.135 20

3̄.96 5.314 416 10 42 0.632 35 2000 1̄.698 964 0 0.155 20

3̄.97 5.314 415 68 45 0.652 35 2000 1̄.698 964 1 0.175 20

3̄.98 5.314 415 23 47 0.672 35 1999 1̄.698 963 0 0.195 20

3̄.99 5.314 414 76 48 0.692 34 2000 1̄.698 963 0 0.215 20

2̄.00 5.314 414 28 52 0.712 34 2000 1̄.698 963 1 0.235 20

2̄.01 5.314 413 76 53 0.732 34 2000 1̄.698 962 0 0.255 20

2̄.02 5.314 413 23 56 0.752 34 2000 1̄.698 962 0 0.275 20

2̄.03 5.314 412 67 59 0.772 34 2000 1̄.698 962 1 0.295 20

2̄.04 5.314 412 08 61 0.792 34 2000 1̄.698 961 0 0.315 20

2̄.05 5.314 411 47 65 0.812 34 2000 1̄.698 961 1 0.335 20

2̄.06 5.314 410 82 67 0.832 34 2000 1̄.698 960 0 0.355 20

2̄.07 5.314 410 15 71 0.852 34 1999 1̄.698 960 0 0.375 20

2̄.08 5.314 409 44 74 0.872 33 2000 1̄.698 960 1 0.395 20

2̄.09 5.314 408 70 77 0.892 33 2000 1̄.698 959 0 0.415 20

2̄.10 5.314 407 93 81 0.912 33 2000 1̄.698 959 1 0.435 20

2̄.11 5.314 407 12 85 0.932 33 2000 1̄.698 958 1 0.455 20

2̄.12 5.314 406 27 89 0.952 33 2000 1̄.698 957 0 0.475 20

2̄.13 5.314 405 38 93 0.972 33 1999 1̄.698 957 1 0.495 20

2̄.14 5.314 404 45 98 0.992 32 2000 1̄.698 956 0 0.515 20

2̄.15 5.314 403 47 102 1.012 32 2000 1̄.698 956 1 0.535 20

2̄.16 5.314 402 45 107 1.032 32 2000 1̄.698 955 1 0.555 20

2̄.17 5.314 401 38 112 1.052 32 2000 1̄.698 954 1 0.575 20

2̄.18 5.314 400 26 117 1.072 32 1999 1̄.698 953 0 0.595 20

2̄.19 5.314 399 09 123 1.092 31 2000 1̄.698 953 1 0.615 20

2̄.20 5.314 397 86 128 1.112 31 2000 1̄.698 952 1 0.635 20

2̄.21 5.314 396 58 135 1.132 31 2000 1̄.698 951 1 0.655 20

2̄.22 5.314 395 23 141 1.152 31 1999 1̄.698 950 1 0.675 20

2̄.23 5.314 393 82 147 1.172 30 2000 1̄.698 949 1 0.695 20

2̄.24 5.314 392 35 155 1.192 30 2000 1̄.698 948 1 0.715 20

2̄.25 5.314 390 80 162 1.212 30 1999 4̄.207 40 1̄.698 947 1 0.735 20

2̄.26 5.314 389 18 169 1.232 29 2000 4̄.247 40 1̄.698 946 1 0.755 20

2̄.27 5.314 387 49 177 1.252 29 2000 4̄.287 40 1̄.698 945 1 0.775 20

2̄.28 5.314 385 72 186 1.272 29 1999 4̄.327 40 1̄.698 944 2 0.795 20

2̄.29 5.314 383 86 195 1.292 28 2000 4̄.367 40 1̄.698 942 1 0.815 20

2̄.30 5.314 381 91 203 1.312 28 1999 4̄.407 40 1̄.698 941 1 0.835 20

2̄.31 5.314 379 88 213 1.332 27 2000 4̄.447 40 1̄.698 940 2 0.855 20

2̄.32 5.314 377 75 224 1.352 27 2000 4̄.487 40 1̄.698 938 1 0.875 20

2̄.33 5.314 375 51 234 1.372 27 1999 4̄.527 40 1̄.698 937 2 0.895 20

2̄.34 5.314 373 17 244 1.392 26 2000 4̄.567 40 1̄.698 935 1 0.915 20

2̄.35 5.314 370 73 257 1.412 26 1999 4̄.607 40 1̄.698 934 2 0.935 20

2̄.36 5.314 368 16 268 1.432 25 2000 4̄.647 40 1̄.698 932 2 0.955 20

2̄.37 5.314 365 48 281 1.452 25 1999 4̄.687 40 1̄.698 930 2 0.975 20

2̄.38 5.314 362 67 295 1.472 24 1999 4̄.727 40 1̄.698 928 2 0.995 20

2̄.39 5.314 359 72 308 1.492 23 2000 4̄.767 40 1̄.698 926 2 1.015 20

2̄.40 5.314 356 64 1.512 23 4̄.807 1̄.698 924 1.035
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TABLES for computing geodesics 3.

Arg log α −∆ log β ∆ log γ ∆ log α′
−∆ log β′ ∆

2̄.40 5.314 356 64 323 1.512 23 1999 4̄.807 40 1̄.698 924 2 1.035 20

2̄.41 5.314 353 41 338 1.532 22 1999 4̄.847 40 1̄.698 922 2 1.055 20

2̄.42 5.314 350 03 353 1.552 21 2000 4̄.887 40 1̄.698 920 2 1.075 20

2̄.43 5.314 346 50 371 1.572 21 1999 4̄.927 40 1̄.698 918 3 1.095 20

2̄.44 5.314 342 79 388 1.592 20 1999 4̄.967 40 1̄.698 915 2 1.115 20

2̄.45 5.314 338 91 406 1.612 19 1999 3̄.007 40 1̄.698 913 3 1.135 20

2̄.46 5.314 334 85 425 1.632 18 2000 3̄.047 40 1̄.698 910 3 1.155 20

2̄.47 5.314 330 60 446 1.652 18 1999 3̄.087 40 1̄.698 907 3 1.175 20

2̄.48 5.314 326 14 466 1.672 17 1999 3̄.127 40 1̄.698 904 3 1.195 20

2̄.49 5.314 321 48 489 1.692 16 1999 3̄.167 40 1̄.698 901 3 1.215 20

2̄.50 5.314 316 59 511 1.712 15 1999 3̄.207 40 1̄.698 898 4 1.235 20

2̄.51 5.314 311 48 535 1.732 14 1999 3̄.247 40 1̄.698 894 3 1.255 20

2̄.52 5.314 306 13 561 1.752 13 1999 3̄.287 40 1̄.698 891 4 1.275 20

2̄.53 5.314 300 52 587 1.772 12 1998 3̄.327 40 1̄.698 887 4 1.295 20

2̄.54 5.314 294 65 615 1.792 10 1999 3̄.367 40 1̄.698 883 4 1.315 20

2̄.55 5.314 288 50 644 1.812 09 1999 3̄.407 40 1̄.698 879 4 1.335 20

2̄.56 5.314 282 06 674 1.832 08 1999 3̄.447 40 1̄.698 875 5 1.355 20

2̄.57 5.314 275 32 705 1.852 07 1998 3̄.487 40 1̄.698 870 5 1.375 20

2̄.58 5.314 268 27 739 1.872 05 1999 3̄.527 40 1̄.698 865 4 1.395 20

2̄.59 5.314 260 88 774 1.892 04 1998 3̄.567 40 1̄.698 861 6 1.415 20

2̄.60 5.314 253 14 810 1.912 02 1998 3̄.607 39 1̄.698 855 5 1.435 20

2̄.61 5.314 245 04 848 1.932 00 1999 3̄.646 40 1̄.698 850 6 1.455 20

2̄.62 5.314 236 56 889 1.951 99 1998 3̄.686 40 1̄.698 844 6 1.475 20

2̄.63 5.314 227 67 930 1.971 97 1998 3̄.726 40 1̄.698 838 6 1.495 20

2̄.64 5.314 218 37 973 1.991 95 1998 3̄.766 40 1̄.698 832 6 1.515 20

2̄.65 5.314 208 64 1020 2.011 93 1998 3̄.806 40 1̄.698 826 7 1.535 20

2̄.66 5.314 198 44 1068 2.031 91 1998 3̄.846 40 1̄.698 819 7 1.555 20

2̄.67 5.314 187 76 1118 2.051 89 1998 3̄.886 40 1̄.698 812 8 1.575 20

2̄.68 5.314 176 58 1170 2.071 87 1997 3̄.926 40 1̄.698 804 7 1.595 20

2̄.69 5.314 164 88 1226 2.091 84 1998 3̄.966 40 1̄.698 797 9 1.615 20

2̄.70 5.314 152 62 1283 2.111 82 1997 2̄.006 40 1̄.698 788 8 1.635 19

2̄.71 5.314 139 79 1344 2.131 79 1998 2̄.046 40 1̄.698 780 9 1.654 20

2̄.72 5.314 126 35 1406 2.151 77 1997 2̄.086 40 1̄.698 771 9 1.674 20

2̄.73 5.314 112 29 1473 2.171 74 1997 2̄.126 40 1̄.698 762 10 1.694 20

2̄.74 5.314 097 56 1543 2.191 71 1997 2̄.166 40 1̄.698 752 11 1.714 20

2̄.75 5.314 082 13 1615 2.211 68 1997 2̄.206 40 1̄.698 741 10 1.734 20

2̄.76 5.314 065 98 1690 2.231 65 1996 2̄.246 40 1̄.698 731 12 1.754 20

2̄.77 5.314 049 08 1771 2.251 61 1997 2̄.286 40 1̄.698 719 11 1.774 20

2̄.78 5.314 031 37 1853 2.271 58 1996 2̄.326 40 1̄.698 708 13 1.794 20

2̄.79 5.314 012 84 1941 2.291 54 1996 2̄.366 39 1̄.698 695 13 1.814 20

2̄.800 5.313 993 43 1004 2.311 50 998 2̄.405 20 1̄.698 682 6 1.834 10

2̄.805 5.313 983 39 1028 2.321 48 998 2̄.425 20 1̄.698 676 7 1.844 10

2̄.810 5.313 973 11 1051 2.331 46 998 2̄.445 20 1̄.698 669 7 1.854 10

2̄.815 5.313 962 60 1076 2.341 44 998 2̄.465 20 1̄.698 662 7 1.864 10

2̄.820 5.313 951 84 1101 2.351 42 998 2̄.485 20 1̄.698 655 8 1.874 10

2̄.825 5.313 940 83 1127 2.361 40 997 2̄.505 20 1̄.698 647 7 1.884 10

2̄.830 5.313 929 56 1152 2.371 37 998 2̄.525 20 1̄.698 640 8 1.894 10

2̄.835 5.313 918 04 1180 2.381 35 998 2̄.545 20 1̄.698 632 8 1.904 10

2̄.840 5.313 906 24 1207 2.391 33 997 2̄.565 20 1̄.698 624 8 1.914 10

2̄.845 5.313 894 17 1234 2.401 30 998 2̄.585 20 1̄.698 616 8 1.924 10

2̄.850 5.313 881 83 2.411 28 2̄.605 1̄.698 608 1.934
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TABLES for computing geodesics 4.

Arg log α −∆ log β ∆ log γ ∆ log α′
−∆ log β′ ∆

2̄.850 5.313 881 83 1264 2.411 279 9974 2̄.605 20 1̄.698 608 8 1.934 10

2̄.855 5.313 869 19 1293 2.421 253 9974 2̄.625 20 1̄.698 600 9 1.944 10

2̄.860 5.313 856 26 1323 2.431 227 9974 2̄.645 20 1̄.698 591 9 1.954 10

2̄.865 5.313 843 03 1353 2.441 201 9973 2̄.665 20 1̄.698 582 9 1.964 10

2̄.870 5.313 829 50 1385 2.451 174 9972 2̄.685 20 1̄.698 573 9 1.974 10

2̄.875 5.313 815 65 1417 2.461 146 9972 2̄.705 20 1̄.698 564 10 1.984 10

2̄.880 5.313 801 48 1450 2.471 118 9971 2̄.725 20 1̄.698 554 9 1.994 10

2̄.885 5.313 786 98 1484 2.481 089 9970 2̄.745 20 1̄.698 545 10 2.004 10

2̄.890 5.313 772 14 1518 2.491 059 9970 2̄.765 20 1̄.698 535 10 2.014 9

2̄.895 5.313 756 96 1553 2.501 029 9969 2̄.785 19 1̄.698 525 11 2.023 10

2̄.900 5.313 741 43 1590 2.510 998 9968 2̄.804 20 1̄.698 514 10 2.033 10

2̄.905 5.313 725 53 1626 2.520 966 9968 2̄.824 20 1̄.698 504 11 2.043 10

2̄.910 5.313 709 27 1664 2.530 934 9966 2̄.844 20 1̄.698 493 11 2.053 10

2̄.915 5.313 692 63 1702 2.540 900 9966 2̄.864 20 1̄.698 482 11 2.063 10

2̄.920 5.313 675 61 1742 2.550 866 9965 2̄.884 20 1̄.698 471 12 2.073 10

2̄.925 5.313 658 19 1783 2.560 831 9965 2̄.904 20 1̄.698 459 12 2.083 10

2̄.930 5.313 640 36 1824 2.570 796 9963 2̄.924 20 1̄.698 447 12 2.093 10

2̄.935 5.313 622 12 1866 2.580 759 9963 2̄.944 20 1̄.698 435 12 2.103 10

2̄.940 5.313 603 46 1909 2.590 722 9962 2̄.964 20 1̄.698 423 13 2.113 10

2̄.945 5.313 584 37 1953 2.600 684 9961 2̄.984 20 1̄.698 410 13 2.123 10

2̄.950 5.313 564 84 1999 2.610 645 9960 1̄.004 20 1̄.698 397 13 2.133 10

2̄.955 5.313 544 85 2045 2.620 605 9959 1̄.024 20 1̄.698 384 14 2.143 10

2̄.960 5.313 524 40 2093 2.630 564 9958 1̄.044 20 1̄.698 370 14 2.153 10

2̄.965 5.313 503 47 2141 2.640 522 9957 1̄.064 19 1̄.698 356 14 2.163 10

2̄.970 5.313 482 06 2191 2.650 479 9956 1̄.083 20 1̄.698 342 15 2.173 10

2̄.975 5.313 460 15 2241 2.660 435 9956 1̄.103 20 1̄.698 327 15 2.183 10

2̄.980 5.313 437 74 2293 2.670 391 9954 1̄.123 20 1̄.698 312 15 2.193 10

2̄.985 5.313 414 81 2347 2.680 345 9953 1̄.143 20 1̄.698 297 16 2.203 9

2̄.990 5.313 391 34 2400 2.690 298 9952 1̄.163 20 1̄.698 281 15 2.212 10

2̄.995 5.313 367 34 2457 2.700 250 9951 1̄.183 20 1̄.698 266 17 2.222 10

1̄.000 5.313 342 77 2513 2.710 201 9950 1̄.203 20 1̄.698 249 17 2.232 10

1̄.005 5.313 317 64 2571 2.720 151 9948 1̄.223 20 1̄.698 232 17 2.242 10

1̄.010 5.313 291 93 2631 2.730 099 9948 1̄.243 20 1̄.698 215 17 2.252 10

1̄.015 5.313 265 62 2691 2.740 047 9946 1̄.263 19 1̄.698 198 18 2.262 10

1̄.020 5.313 238 71 2754 2.749 993 9945 1̄.282 20 1̄.698 180 18 2.272 10

1̄.025 5.313 211 17 2818 2.759 938 9943 1̄.302 20 1̄.698 162 19 2.282 10

1̄.030 5.313 182 99 2883 2.769 881 9943 1̄.322 20 1̄.698 143 19 2.292 10

1̄.035 5.313 154 16 2949 2.779 824 9941 1̄.342 20 1̄.698 124 20 2.302 10

1̄.040 5.313 124 67 3018 2.789 765 9939 1̄.362 20 1̄.698 104 20 2.312 10

1̄.045 5.313 094 49 3087 2.799 704 9939 1̄.382 20 1̄.698 084 20 2.322 10

1̄.050 5.313 063 62 3159 2.809 643 9936 1̄.402 20 1̄.698 064 21 2.332 10

1̄.055 5.313 032 03 3232 2.819 579 9936 1̄.422 20 1̄.698 043 22 2.342 9

1̄.060 5.312 999 71 3306 2.829 515 9934 1̄.442 19 1̄.698 021 22 2.351 10

1̄.065 5.312 966 65 3383 2.839 449 9932 1̄.461 20 1̄.697 999 22 2.361 10

1̄.070 5.312 932 82 3460 2.849 381 9931 1̄.481 20 1̄.697 977 23 2.371 10

1̄.075 5.312 898 22 3541 2.859 312 9929 1̄.501 20 1̄.697 954 24 2.381 10

1̄.080 5.312 862 81 3623 2.869 241 9928 1̄.521 20 1̄.697 930 24 2.391 10

1̄.085 5.312 826 58 3706 2.879 169 9926 1̄.541 20 1̄.697 906 25 2.401 10

1̄.090 5.312 789 52 3791 2.889 095 9924 1̄.561 20 1̄.697 881 25 2.411 10

1̄.095 5.312 751 61 3879 2.899 019 9922 1̄.581 19 1̄.697 856 26 2.421 10

1̄.100 5.312 712 82 2.908 941 1̄.600 1̄.697 830 2.431
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ABSTRACT 

These notes provide a detailed derivation of the equations for computing the direct and 

inverse problems on the ellipsoid.  These equations could be called Bessel's method and 

have a history dating back to F. W. Bessel's original paper on the topic titled: 'On the 

computation of geographical longitude and latitude from geodetic measurements', 

published in Astronomische Nachrichten (Astronomical Notes), Band 4 (Volume 4), 

Number 86, Speiten 241-254 (Columns 241-254), Altona 1826.  The equations developed 

here are of a slightly different form than those presented by Bessel, but they lead directly 

to equations presented by Rainsford (1955) and Vincenty (1975) and the method of 

development closely follows that shown in Geometric Geodesy (Rapp, 1981).  An 

understanding of the methods introduced in the following pages, in particular the 

evaluation of elliptic integrals by series expansion, will give the student an insight into 

other geodetic calculations. 

INTRODUCTION 

The direct and inverse problems on the ellipsoid are fundamental geodetic operations and 

can be likened to the equivalent operations of plane surveying; radiations (computing 

coordinates of points given bearings and distances radiating from a point of known 

coordinates) and joins (computing bearings and distances between points having known 

coordinates).  In plane surveying, the coordinates are 2-Dimensional (2D) rectangular 

coordinates, usually designated East and North and the reference surface is a plane, either 

a local horizontal plane or a map projection plane. 
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In geodesy, the reference surface is an ellipsoid, the coordinates are latitudes and 

longitudes, directions are known as azimuths and distances are geodesic arc lengths. 
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Fig. 1: Geodesic curve on an ellipsoid  

The geodesic is a unique curve on the surface of an ellipsoid defining the shortest distance 

between two points.  A geodesic will cut meridians of an ellipsoid at angles α , known as 

azimuths and measured clockwise from north 0º to 360 .  Figure 1 shows a geodesic curve 

C between two points A ( ),A Aφ λ  and B ( ),B Bφ λ  on an ellipsoid.  ,φ λ  are latitude and 

longitude respectively and an ellipsoid is taken to mean a surface of revolution created by 

rotating an ellipse about its minor axis, NS.  The geodesic curve C of length s from A to B 

has a forward azimuth ABα  measured at A and a reverse azimuth BAα  measured at B.   

The direct problem on an ellipsoid is: given latitude and longitude of A and azimuth ABα  

and geodesic distance s, compute the latitude and longitude of B and the reverse azimuth 

BAα . 

The inverse problem is: given the latitudes and longitudes of A and B, compute the 

forward and reverse azimuths ABα , BAα  and the geodesic distance s. 

Formula for computing geodesic distances and longitude differences between points 

connected by geodesic curves are derived from solutions of elliptic integrals and in Bessel's 

method, these elliptic integrals are solutions of equations connecting differential elements 

on the ellipsoid with corresponding elements on an auxiliary sphere.  These integrals do 

not have direct solutions but instead are solved by expanding them into trigonometric 

series and integrating term-by-term.  Hence the equations developed here are series-type 
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formula truncated at a certain number of terms that give millimetre precision for any 

length of line not exceeding 180º in longitude difference. 

These formulae were first developed by Bessel (1826) who gave examples of their use using 

10-place logarithms.  A similar development is given in Handbuch der Vermessungskunde 

(Handbook of Geodesy) by Jordan/Eggert/Kneissl, 1958. 

The British geodesist Hume Rainsford (1955) presented equations and computational 

methods for the direct and inverse problems that were applicable to machine computation 

of the mid 20th century.  His formulae and iterative method for the inverse case were 

similar to Bessel's, although his equations contained different ellipsoid constants and 

geodesic curve parameters, but his equations for the direct case, different from Bessel's, 

were based on a direct technique given by G.T. McCaw (1932-33) which avoided iteration.  

For many years Rainsford's (and McCaw's) equations were the standard method of solving 

the direct and inverse problems on the ellipsoid when millimetre precision was required, 

even though they involved iteration and lengthy long-hand machine computation.  In 1975, 

Thaddeus (Tom) Vincenty (1975-76), then working for the Geodetic Survey Squadron of 

the US Air Force, presented a set of compact nested equations that could be conveniently 

programmed on the then new electronic computers.  His method and equations were based 

on Rainsford's inverse method combined with techniques developed by Professor Richard 

H. Rapp of the Ohio State University.  Vincenty's equations for the direct and inverse 

problems on the ellipsoid have become a standard method of solution. 

Vincenty's method (following on from Rainsford and Bessel) is not the only method of 

solving the direct and inverse problems on the ellipsoid.  There are other techniques; some 

involving elegant solutions to integrals using recurrence relationships, e.g., Pittman (1986) 

and others using numerical integration techniques, e.g., Kivioja (1971) and Jank & Kivioja 

(1980). 

In this paper, we present a development following Rapp (1981) and based on Bessel's 

method which yields Rainsford's equations for the inverse problem.  We then show how 

Vincenty's equations are obtained and how they are used in practice.  In addition, certain 

ellipsoid relationships are given, the mathematical definition of a geodesic is discussed and 

the characteristic equation of a geodesic derived.  The characteristic equation of a geodesic 

is fundamental to all solutions of the direct and inverse problems on the ellipsoid. 
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SOME ELLIPSOID RELATIONSHIPS 

The size and shape of an ellipsoid is defined by one of three pairs of parameters: (i) ,a b  

where a and b are the semi-major and semi-minor axes lengths of an ellipsoid respectively, 

or (ii) ,a f  where f is the flattening of an ellipsoid, or (iii) 2,a e  where 2e  is the square of 

the first eccentricity of an ellipsoid.  The ellipsoid parameters 2, , ,a b f e  are related by the 

following equations 

 1
a b b

f
a a
−

= = −  (1) 

 ( )1b a f= −   (2) 

 ( )
2 2 2

2
2 21 2

a b b
e f f

a a
−

= = − = −  (3) 

 ( ) ( )
2

22
21 1 2 1

b
e f f f

a
− = = − − = −  (4) 

The second eccentricity e′  of an ellipsoid is also of use and 

 
( )

( )

2 2 2 2
2

22 2 2

2
1

1 1

f fa b a e
e

b b e f

−−′ = = − = =
− −

 (5) 

 
2

2
21

e
e

e

′
=

′+
 (6) 

In Figure 1 the normals to the surface at A and B intersect the rotational axis of the 

ellipsoid (NS line) at AH  and BH  making angles ,A Bφ φ  with the equatorial plane of the 

ellipsoid.  These are the latitudes of A and B respectively.  The longitudes ,A Bλ λ  are the 

angles between the Greenwich meridian plane (a reference plane) and the meridian planes 

AONAH  and BONBH  containing the normals through A and B.  φ  and λ  are curvilinear 

coordinates and meridians of longitude (curves of constant λ ) and parallels of latitude 

(curves of constant φ ) are parametric curves on the ellipsoidal surface. 

For a general point P on the surface of the ellipsoid (see Fig. 2), planes containing the 

normal to the ellipsoid intersect the surface creating elliptical sections known as normal 

sections.  Amongst the infinite number of possible normal sections at a point, each having 

a certain radius of curvature, two are of interest: (i) the meridian section, containing the 

axis of revolution of the ellipsoid and having the least radius of curvature, denoted by ρ , 

and (ii) the prime vertical section, perpendicular to the meridian plane and having the 

greatest radius of curvature, denoted by ν . 
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( )

( )
( )

3
2

2 2

32 2

1 1

1 sin

a e a e

We
ρ

φ

− −
= =

−
 (7) 

 
( )

1
22 21 sin

a a
We

ν
φ

= =
−

 (8) 

 2 2 21 sinW e φ= −  (9) 

The centres of the radii of curvature of the prime vertical sections at A and B are at AH  

and BH , where AH  and BH  are the intersections of the normals at A and B and the 

rotational axis, and A APHν = , B BPHν = .  The centres of the radii of curvature of the 

meridian sections at A and B lie on the normals between P and AH  and P and BH . 

Alternative equations for the radii of curvature ρ  and ν  are given by 

 
( )

3
2

2

32 21 cos

a c
Vb e

ρ
φ

= =
′+

 (10) 

 
( )

1
2

2

2 21 cos

a c
Vb e

ν
φ

= =
′+

 (11) 

 
2

1
a a

c
b f

= =
−

 (12) 

 2 2 21 cosV e φ′= +  (13) 

and c is the polar radius of curvature of the ellipsoid. 

The latitude functions W and V are related as follows 

 
( )

1
2

2
2

2 2
   and   

1 1

V V b
W W V

e ae
= = =

′+ ′+
 (14) 

Points on the ellipsoidal surface have curvilinear coordinates ,φ λ  and Cartesian 

coordinates x,y,z where the x-z plane is the Greenwich meridian plane, the x-y plane is the 

equatorial plane and the y-z plane is a meridian plane 90º east of the Greenwich meridian 

plane.  Cartesian and curvilinear coordinates are related by 

 

( )2

cos cos

cos cos

1 sin

x

y

z e

ν φ λ

ν φ λ

ν φ

=

=

= −

 (15) 

Note that ( )21 eν −  is the distance along the normal from a point on the surface to the 

point where the normal cuts the equatorial plane. 
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THE DIFFERENTIAL RECTANGLE ON THE ELLIPSOID 

The derivation of equations relating to the geodesic requires an understanding of the 

connection between differentially small quantities on the surface of the ellipsoid.  These 

relationships can be derived from the differential rectangle, with diagonal PQ in Figure 2 

which shows P and Q on an ellipsoid, having semi-major axis a, flattening f, separated by 

differential changes in latitude dφ  and longitude dλ .  P and Q are connected by a curve 

of length ds making an angle α  (the azimuth) with the meridian through P.  The 

meridians λ  and dλ λ+ , and the parallels φ  and dφ φ+  form a differential rectangle on 

the surface of the ellipsoid.  The differential distances dp  along the parallel φ  and dm  

along the meridian λ  are 

 cosdp wd dλ ν φ λ= =  (16) 

 dm dρ φ=   (17) 

where ρ  and ν  are radii of curvature in the meridian and prime vertical planes 

respectively and cosw ν φ=  is the perpendicular distance from the rotational axis. 

The differential distance ds is given by 

 ( ) ( )
2 2

2 2 cosds dp dm d dν φ λ ρ φ= + = +  (18) 
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Figure 2: Differential rectangle on the ellipsoid
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and so 

 
2 2

2 2 2 2 2 2cos      or     cos
ds d ds d
d d d d

λ φ
ν φ ρ ν φ ρ

φ φ λ λ

⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜= + = +⎟⎜ ⎟⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠
 

while 

 sin cos     and    cos
d d
ds ds
λ φ

α ν φ α ρ= =  (19) 

MATHEMATICAL DEFINITION OF A GEODESIC 

A geodesic can be defined mathematically by considering 

concepts associated with space curves and surfaces.  A 

space curve may be defined as the locus of the terminal 

points P of a position vector ( )tr  defined by a single 

scalar parameter t, 

 ( ) ( ) ( ) ( )t x t y t z t= + +r i j k  (20) 

, ,i j k  are fixed unit Cartesian vectors in the directions of 

the x,y,z coordinate axes.  As the parameter t varies the 

terminal point P of the vector sweeps out the space 

curve C. 

Let s be the arc-length of C measured from some convenient point on C, so that 
2 2 2ds dx dy dz

dt dt dt dt
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜= + +⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 or 
d d

s dt
dt dt

= •∫
r r

.  Hence s is a function of t and x,y,z are 

functions of s.  Let Q, a small distance sδ along the curve from P, have a position vector 

δ+r r .  Then PQδ =r
JJJG

 and sδ δr � .  Both when sδ is positive or negative 
s
δ
δ
r

 

approximates to a unit vector in the direction of s increasing and 
d
ds
r

 is a tangent vector of 

unit length denoted by t̂ ; hence 

 ˆ d dx dy dz
ds ds ds ds

= = + +
r

t i j k  (21) 

Since t̂  is a unit vector then ˆ ˆ 1• =t t  and differentiating with respect to s leads to 
ˆ

ˆ 0
d
ds

• =
t

t  from which we deduce that 
ˆd

ds
t
 is orthogonal to t̂  and write 

 
ˆ

ˆ
d
ds

κ=
t

n , 0κ >  (22) 
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ˆd
ds
t
 is called the curvature vector k, n̂  is a unit vector called the principal normal vector, 

κ  the curvature and 
1

ρ
κ

=  is the radius of curvature.  The circle through P, tangent to t̂  

with this radius ρ  is called the osculating circle.  Also 
ˆ

ˆ
d
ds

κ• =
t

n ; i.e., n̂  is the unit 

vector in the direction of k.  Let b̂  be a third unit vector defined by the vector cross 

product 

 ˆ ˆ ˆ= ×b t n  (23) 

thus ˆˆ ˆ,  and t b n  form a right-handed triad.  Differentiating equation (23) with respect to s 

gives 

 ( )
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

d d d d d d
ds ds ds ds ds ds

κ= × = × + × = × + × = ×
b t n n n

t n n t n n t t  

then 

 ( )
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ 0

d d d
ds ds ds

⎛ ⎞⎟⎜• = • × = • × =⎟⎜ ⎟⎜⎝ ⎠
b n n

t t t t t  

so that 
ˆd

ds
b

 is orthogonal to t̂ .  But from ˆ ˆ 1• =b b  it follows that 
ˆ

ˆ 0
d
ds

• =
b

b  so that 
ˆd

ds
b

 is 

orthogonal to b̂  and so is in the plane containing t̂  and n̂ .  Since 
ˆd

ds
b

 is in the plane of t̂  

and n̂  and is orthogonal to t̂ , it must be parallel to n̂ .  The direction of 
ˆd

ds
b

 is opposite n̂  

as it must be to ensure the cross product 
ˆ

ˆd
ds

×
b

t  is in the direction of b̂ .  Hence 

 
ˆ

ˆ
d
ds

τ= −
b

n , 0τ >  (24) 

We call b̂  the unit binormal vector, τ  the torsion, and 
1
τ

 the radius of torsion.  t̂ , n̂  and 

b̂  form a right-handed set of orthogonal unit vectors along a space curve. 

The plane containing t̂  and n̂  is the osculating plane, the plane containing n̂  and b̂  is 

the normal plane and the plane containing t̂  and b̂  is the rectifying plane.  Figure 4 shows 

these orthogonal unit vectors for a space curve. 
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Figure 4:  The tangent t̂ , principal normal n̂  and binormal b̂  to a space curve 

 

Also ˆ ˆˆ = ×n b t  and the derivative with respect to s is 

 ( )
ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ

d d d d
ds ds ds ds

τ κ τ κ= × = × + × = − × + × = −
n b t

b t t b n t b n b t  (25) 

Equations (22), (24) and (25) are known as the Frenet-Serret formulae. 

 

ˆ
ˆ

ˆ
ˆ

ˆ ˆ ˆ

d
ds

d
ds
d
ds

κ

τ

τ κ

=

= −

= −

t
n

b
n

n
b t

 (26) 

These formulae, derived independently by the French mathematicians Jean-Frédéric 

Frenet (1816–1900) and Joseph Alfred Serret (1819–1885) describe the dynamics of a point 

moving along a continuous and differentiable curve in three-dimensional space.  Frenet 

derived these formulae in his doctoral thesis at the University of Toulouse; the latter part 

of which was published as 'Sur quelques propriétés des courbes à double courbure', (Some 

properties of curves with double curvature) in the Journal de mathématiques pures et 

appliqués (Journal of pure and applied mathematics), Vol. 17, pp.437-447, 1852.  Frenet 

also explained their use in a paper titled 'Théorèmes sur les courbes gauches' (Theorems on 

awkward curves) published in 1853.  Serret presented an independent derivation of the 

same formulae in 'Sur quelques formules relatives à la théorie des courbes à double 

courbure' (Some formulas relating to the theory of curves with double curvature) published 

in the J. de Math. Vol. 16, pp.241-254, 1851 (DSB 1971). 
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A geodesic may be defined in the following manner: 

 

A curve drawn on a surface so that its osculating plane at any point contains the 

normal to the surface at the point is a geodesic.  It follows that the principal normal 

at any point on the curve is the normal to the surface and the geodesic is the shortest 

distance between two points on a surface. 

 

ξ
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P Q

C

osculating 

•

Q' A

B
S
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N
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plane

t

n

b

plane

^ ^

^

^

 

Figure 5:  The osculating plane of a geodesic 

To understand that the geodesic is the shortest path on a surface requires the use of 

Meusnier's theorem, a fundamental theorem on the nature of surfaces.  Jean-Baptiste-

Marie-Charles Meusnier de la Place (1754 - 1793) was a French mathematician who, in a 

paper titled Mémoire sur la corbure des surfaces (Memoir on the curvature of surfaces), 

read at the Paris Academy of Sciences in 1776 and published in 1785, derived his theorem 

on the curvature, at a point of a surface, of plane sections with a common tangent (DSB 

1971).  His theorem can be stated as: 

Between the radius ρ  of the osculating circle of a plane slice C and the radius 

Nρ  of the osculating circle of a normal slice NC , where both slices have the 

same tangent at P, there exists the relation 

 cosNρ ρ ξ=  

where ξ  is the angle between the unit principal normals n̂  and N̂  to curves C 

and NC  at P. 
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In Figure 5, an infinitesimal arc PQ of a geodesic coincides with the section of the surface 

S by a plane containing t̂  and N̂  where N̂  is a unit vector normal to the surface at P. 

This plane is a normal section plane through P and by Meusnier's theorem, the geodesic 

arc PQ is the arc of least curvature through P and Q; or the shortest distance on the 

surface between two adjacent points P and Q is along the geodesic through the points.  In 

Figure 5, curve C (the arc APB) will have a smaller radius of curvature at P than curve 

NC  the normal section arc Q'PQ. 

THE CHARACTERISTIC EQUATION OF A GEODESIC USING DIRECTION 

COSINES 

α
β

γ

y

z

x

1

2
•

• r   r = βcos 2

r   r = αcos 
1

r   r = γcos 3

Figure 6: Direction cosines

r
r

 

The characteristic equation of a geodesic can be derived from relationships between the 

direction cosines of the principal normal to a curve and the normal to the surface.  In 

Figure 6, 1 2 3r r r= + +r i j k  is a vector between two points in space having a magnitude 

2 2 2
1 2 3r r r r= + + .  1 2 3ˆ

r r r
r r r r

= = + +
r

r i j k  is a unit vector and the scalar components 

1 cos
r
r

α= , 2 cos
r
r

β=  and 3 cos
r
r

γ= .  cosl α= , cosm β=  and cosn γ=  are known as 

direction cosines and the unit vector can be expressed as ˆ l m n= + +r i j k . 

From equations (20) and (22) we may write the unit principal normal vector n̂  of a curve 

C as 

 
2

2

1
ˆ

d x y z
x y z

ds
ρ ρ ρ

κ κ κ κ
′′ ′′ ′′

′′ ′′ ′′= = + + = + +
r

n i j k i j k  (27) 



 

Geodesics – Bessel's method 12 

where 
1

ρ
κ

= .  
dx

x
ds

′ =  and 
2

2

d x
x

ds
′′ =  are first and second derivatives with respect to arc 

length respectively and similarly for , , ,y z y z′ ′ ′′ ′′ . 

The unit normal N̂  to the ellipsoid surface is 1 2 3ˆ N N N
ν ν ν

= + +N i j k  where 1 2 3, ,N N N  are 

the Cartesian components of the normal vector PH
JJJG

 and ν  is the magnitude.  1 cos
N

α
ν

= , 

2 cos
N

β
ν

=  and 3 cos
N

γ
ν

=  are the direction cosines l, m and n.  Note that the direction 

of the unit normal to the ellipsoid is towards the centre of curvature of normal sections 

passing through P. 
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Figure 7:  The unit normal N̂  to the ellipsoid 

The unit normal N̂  to the ellipsoid surface is given by 

 
sinˆ x y ν φ

ν ν ν
⎛ ⎞− − −⎛ ⎞ ⎛ ⎞ ⎟⎟ ⎟ ⎜⎜ ⎜= + + ⎟⎟ ⎟ ⎜⎜ ⎜⎟ ⎟ ⎟⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠

N i j k  (28) 

To ensure that the curve C is a geodesic, i.e., the unit principal normal n̂  to the curve 

must be coincident with the unit normal N̂  to the surface, the coefficients in equations 

(27) and (28) must be equal, thus 

 
sin

; ;    
x y

x y z
ν φ

ρ ρ ρ
ν ν ν

− − −′′ ′′ ′′= = =  

This leads to 

 sin

x y z
yx

ρ ρ ρ
ν φν ν ν

′′ ′′ ′′
= =  (29) 
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From the first two equations of (29) we have x y
x y
ν ν

ρ ρ′′ ′′=  giving the second-order 

differential equation (provided 0ρν ≠ ) 

 0xy yx′′ ′′− =  

which can be written as ( ) 0
d

xy yx
ds

′ ′− =  and so a first integral is 

 xy yx C′ ′− =  (30) 

where C is an arbitrary constant.  Now, from equations (15), x and y are functions of φ  

and λ , and the chain rule gives 

 

x d x d
x

ds ds
y d y d

y
ds ds

φ λ
φ λ

φ λ
φ λ

∂ ∂′ = +
∂ ∂
∂ ∂′ = +
∂ ∂

 (31) 

Differentiating the first two equations of (15) with respect to φ , bearing in mind that ν  is 

a function of φ  gives 

 

( )
3
2

2

2 2

sin cos cos cos

sin cos
sin cos cos cos

1 sin

x d
d

ae

e

ν
ν φ λ φ λ

φ φ
φ φ

ν φ λ φ λ
φ

∂
= − +

∂

= − +
−

 

Using equation (8) and simplifying yields 

 sin cos
x

ρ φ λ
φ

∂
= −

∂
 

Similarly 

 sin sin cos sin sin sin
y d

d
ν

ν φ λ φ λ ρ φ λ
φ φ

∂
= − + = −

∂
 

Placing these results, together with the derivatives  and 
x y
λ λ

∂ ∂
∂ ∂

 into equations (31) gives 

 
sin cos cos sin

sin sin cos cos

d d
x

ds ds
d d

y
ds ds

φ λ
ρ φ λ ν φ λ

φ λ
ρ φ λ ν φ λ

′ = − −

′ = − +
 

These values of  and x y′ ′  together with x and y from equations (15) substituted into 

equation (30) gives 

 2 2cos
d

C
ds
λ

ν φ =  (32) 
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which can be re-arranged to give an expression for the differential distance ds 

 
2 2cos

ds d
C

ν φ
λ=  

ds is also given by equation (18) and equating the two and simplifying gives the 

differential equation of the geodesic (Thomas 1952) 

 ( )2 2 2 2 2 2 2 2 2cos cos 0C d C dρ φ ν φ ν φ λ+ − =  (33) 

From equation (19), sin cos
d
ds
λ

α ν φ=  and substituting into equation (32) gives the 

characteristic equation of the geodesic on the ellipsoid 
 

 cos sin Cν φ α =  (34) 

 

Equation (34) is also known as Clairaut's equation in honour of the French mathematical 

physicist Alexis-Claude Clairaut (1713-1765).  In a paper in 1733 titled Détermination 

géométrique de la perpendiculaire à la méridienne, tracée par M. Cassini, avec plusieurs 

methods d’en tirer la grandeur et la figure de la terre (Geometric determination of the 

perpendicular to the meridian, traced by Mr. Cassini, … on the figure of the Earth.) 

Clairaut made an elegant study of the geodesics of quadrics of rotation.  It included the 

property already pointed out by Johann Bernoulli: the osculating plane of the geodesic is 

normal to the surface (DSB 1971). 

The characteristic equation of a geodesic shows that the geodesic on the ellipsoid has the 

intrinsic property that at any point, the product of the radius w of the parallel of latitude 

and the sine of the azimuth of the geodesic at that point is a constant.  This means that as 

cosw ν φ=  decreases in higher latitudes, in both the northern and southern hemispheres, 

sinα  increases until it reaches a maximum or minimum of 1± , noting that the azimuth of 

a geodesic at a point will vary between 0° and 180° if the point is moving along a geodesic 

in an easterly direction or between 180° and 360° if the point is moving along a geodesic in 

a westerly direction.  At the point when sin 1α = ± , which is known as the vertex, w is a 

minimum and the latitude φ  will be a maximum value 0φ , known as the geodetic latitude 

of the vertex.  Thus the geodesic oscillates over the surface of the ellipsoid between two 

parallels of latitude having a maximum in the northern and southern hemispheres and 

crossing the equator at nodes; but as we will demonstrate later, due to the eccentricity of 

the ellipsoid the geodesic will not repeat after a complete cycle. 
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Figure 8a Figure 8b Figure 8c 

Figure 8:  A single cycle of a geodesic on the Earth 

Figures 8a, 8b and 8c show a single cycle of a geodesic on the Earth.  This particular 

geodesic reaches maximum latitudes of approximately ±45º and has an azimuth of 

approximately 45º as it crosses the equator at longitude 0º. 

Figure 9 shows a schematic representation of the oscillation of a geodesic on an ellipsoid.  

P is a point on a geodesic that crosses the equator at A, heading in a north-easterly 

direction reaching a maximum northerly latitude maxφ  at the vertex 0P  (north), then 

descends in a south-easterly direction crossing the equator at B, reaching a maximum 

southerly latitude minφ  at 0P  (south), then ascends in a north-easterly direction crossing 

the equator again at A'.  This is one complete cycle of the geodesic, but Aλ ′  does not equal 

Aλ  due to the eccentricity of the ellipsoid, hence we say that the geodesic curve does not 

repeat after a complete cycle. 
 

equator •••

•

•

•

node node node

vertex

vertex

P
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φ

λ
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Figure 9:  Schematic representation of the oscillation of a geodesic on an ellipsoid 
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RELATIONSHIPS BETWEEN PARAMETRIC LATITUDE ψ  AND GEODETIC 

LATITUDE φ  

The development of formulae is simplified if parametric latitude ψ  is used rather than 

geodetic latitude φ .  The connection between the two latitudes can be obtained from the 

following relationships. 

Figure 10 shows a portion of a meridian NPE of an 

ellipsoid having semi-major axis OE a=  and semi-

minor axis ON b= .  P is a point on the ellipsoid 

and P ′  is a point on an auxiliary circle centred on O 

of radius a.  P and P ′  have the same perpendicular 

distance w from the axis of revolution ON.  The 

normal to the ellipsoid at P cuts the major axis at 

an angle φ  (the geodetic latitude) and intersects the 

rotational axis at H.  The distance PH ν= . The 

angle P OE ψ′ =  is the parametric latitude 

The Cartesian equation of the ellipse and the 

auxiliary circle of Figure 10 are 
2 2

2 2
1

w z
a b

+ =  and 2 2 2w z a+ =  respectively.  Now, since 

the w-coordinate of P and P ′  are the same then 
2

2 2 2 2 2 2
2 P P P P

a
a z w w a z

b ′ ′− = = = −  which 

leads to P P

b
z z

a ′= .  Using this relationship 

 
cos

sin

w OM a

z MP b

ψ

ψ

= =

= =
 (35) 

Note that writing equations (35) as cos
w
a

ψ=  and sin
z
b

ψ=  then squaring and adding 

gives 
2 2

2 2
2 2 cos sin 1

w z
a b

ψ ψ+ = + =  which is the Cartesian equation of an ellipse. 

 

From Figure 10 

 cos cosw aν φ ψ= =  (36) 

and from the third of equations (15) ( )21 sinz eν φ= − , hence using equations (35) we 

may write 

•

•

•

φ

P

O

H

no
rm

al

N

M Eψ

a

w
tangent

auxiliary circle

a

b

ν

z

w

P'
N'

Figure 10: Meridian section of ellipsoid
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( )2

cos cos

sin 1 sin

w a

z b e

ψ ν φ

ψ ν φ

= =

= = −
 (37) 

from which the following ratios are obtained 

 ( )2tan 1 tan
z b

e
w a

ψ φ= = −  

Since 
2 2 2

2
2 21

a b b
e

a a
−

= = −  then 
2

2
21

b
e

a
− =  and we may define parametric latitude ψ  by 

 ( ) ( )
1
22tan tan 1 tan 1 tan

b
e f

a
ψ φ φ φ= = − = −  (38) 

Alternatively, using equations (36) and (8) we may define the parametric latitude ψ  by 

 
( )

1
22 2

cos
cos

1 sine

φ
ψ

φ
=

−
 (39) 

or equivalently by 

 
( )

1
22 2

sin
sin

1 cose

ψ
φ

ψ
=

−
 (40) 

These three relationships are useful in the derivation of formulae for geodesic distance and 

longitude difference that follow. 

THE LATITUDES 0φ  AND 0ψ  OF THE GEODESIC VERTEX 

Now Clairaut's equation (34) is cos sin constant Cν φ α = = , where 
( )

1
22 21 sin

a

e
ν

φ
=

−
.  

The term cosν φ  will be a minimum (and the latitude φ  will be a maximum in the 

northern and southern hemispheres) when sinα  is a maximum of 1, and this occurs when 

90  or 270α = D D .  This point is known as the geodesic vertex. 

Let 0 0cosν φ  be this smallest value, then 

 0 0cos cos sinCν φ ν φ α= =  (41) 

0φ  is called the maximum geodetic latitude and the value of ψ  corresponding to 0φ  is 

called the maximum parametric latitude and is denoted by 0ψ .  Using this correspondence 

and equations (36) and (41) gives 

 0cos cos sin cos sina aψ ν φ α ψ α= =  (42) 
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From this we may define the parametric latitude of the vertex 0ψ  as 

 0cos cos sinψ ψ α=  (43) 

and the azimuth α  of the geodesic as 

 
2 2

0cos cos
cos

cos

ψ ψ
α

ψ
−

=  (44) 

 

From equation (43) we see that if the azimuth α  of a geodesic is known at a point P 

having parametric latitude ψ , the parametric latitude 0ψ  of the vertex 0P  can be 

computed.  Conversely, given ψ  and 0ψ  of points P and 0P  the azimuth of the geodesic 

between them may be computed from equation (44). 

 

THE ELLIPSOID, THE AUXILIARY SPHERE AND THE DIFFERENTIAL 

EQUATIONS 

The derivation of Bessel's formulae (or Rainsford's and Vincenty's equations) begins by 

developing relationships between the ellipsoid and a sphere.  The sphere is an auxiliary 

surface and not an approximation of the ellipsoid; its radius therefore is immaterial and 

can be taken to be 1 (unit radius). 
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Figure 11a shows a geodesic passing through 1P  and 2P  on an ellipsoid.  The geodesic has 

azimuths Eα  where it crosses the equator (a node), 1α  and 2α  at 1P  and 2P  respectively 

and reaches a maximum latitude at the vertex where its azimuth is 90α = D .  The length 

of the geodesic between 1P  and 2P  is s and the longitudes of 1P  and 2P  are 1λ  and 2λ .  

Using equation (43) we may write 

 1 1 2 2 0cos sin cos sin cosψ α ψ α ψ= =  (45) 

Figure 11b shows 1P ′  and 2P ′  on an auxiliary sphere (of unit radius) where latitudes on 

this sphere are defined to be equal to parametric latitudes on the ellipsoid.  The geodesic, a 

great circle on a sphere, passing through 1P ′  and 2P ′  has azimuths EA  at the equator E, 1A  

and 2A  at 1P ′  and 2P ′  respectively and 90A = D  at the vertex H.  The length of the great 

circle between 1P ′  and 2P ′  is σ  and the longitudes of 1P ′  and 2P ′  are 1ω  and 2ω .  Again, 

using equation (43), which holds for all geodesics (or great circles on auxiliary spheres) we 

may write 

 1 1 2 2 0cos sin cos sin cosA Aψ ψ ψ= =  (46) 

Now, since parametric latitudes are defined to be equal on the auxiliary sphere and the 

ellipsoid, equations (45) and (46) show that on these two surfaces A α= , i.e., azimuths of 

great circles on the auxiliary sphere are equal to azimuths of geodesics on the ellipsoid. 

Now, consider the differential rectangle on the ellipsoid and sphere shown in Figures 12a 

and 12b below 

λ
λ + dλ

φ

φ + dφ

•

•

ds
α

α α+ + d dα α

ν cos φ dλ

ρ 
dφ

ω
ω + dω

ψ

ψ + dψ

•

•

dσ

dωcos ψ

dψ

Figure 12a:  Differential rectangle 

                 on ellipsoid

Figure 12b:  Differential rectangle

                 on sphere

α

 

We have for the ellipsoid [see Figure 2 and equations (19)]  

 
cos

sin cos

ds d

ds d

α ρ φ

α ν φ λ

=

=
 (47) 
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and for the sphere 

 
cos

sin cos

d d

d d

σ α ψ

σ α ψ ω

=

=
 (48) 

Dividing equations (47) by equations (48) gives 

 
coscos sin

;
cos sin cos

d dds ds
d d d d

ρ φ ν φ λα α
σ α ψ σ α ψ ω

= =  

and noting from equation (36) that cos cosaν φ ψ= , then cancelling terms gives 

 
ds d d

a
d d d

φ λ
ρ

σ ψ ω
= =  (49) 

We may write these equations as two separate relationships 

 
ds d
d d

φ
ρ

σ ψ
=  (50) 

 
1d ds

d a d
λ
ω σ

=  (51) 

and if we can obtain an expression for 
d
d
φ
ψ

 then we may develop two relatively simple 

differential equations; one involving distance 
ds
dσ

 (s ellipsoid and σ  sphere) and the other 

involving longitude 
d
d
λ
ω

 (λ  ellipsoid and ω  sphere).  Integration yields equations that will 

enable us to compute geodesic lengths s on the ellipsoid given great circle distances σ  on 

an auxiliary sphere, and equations to compute longitude differences λΔ  on the ellipsoid 

given longitude differences ωΔ  on the auxiliary sphere. 

 

An expression for 
d
d
φ
ψ

 can be determined as follows. 

From equation (38) we have 

 ( )
1
22tan 1 taneψ φ= −  

and differentiating with respect to ψ  gives 

 ( ) ( ){ }1
22tan 1 tan

d d d
e

d d d
φ

ψ φ
ψ φ ψ

= −  

and ( )
1
22 2 2sec 1 sec

d
e

d
φ

ψ φ
ψ

= −  
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giving 
( )

1
2

2

22

1 cos
cos1

d
d e

φ φ
ψ ψ

=
−

 (52) 

Substituting equation (52) into equation (50) gives 

 
( )

1
2

2

22

cos
cos1

ds
d e

ρ φ
σ ψ

=
−

 (53) 

and substituting equation (53) into equation (51) gives 

 
( )

1
2

2

22

cos
cos1

d
d a e

λ ρ φ
ω ψ

=
−

 (54) 

Now from equation (36) we may write 

 
2 2

2 2

cos cos
   and   

cos cos
a aφ φ

ψ ν ψ ν
= =  

and using the relationships given in equations (4), (10), (11) and (12) we may write 

 
( ) ( )

1 1
2 2

2 2 2 2 3 2

2 2 2 3 2 3 2 32 2

cos
; ;

cos 1 1

a b V c a a a
a V b b V b Ve a e

φ ρ ρ
ψ ν

= = = = =
− −

 (55) 

Substituting these results into equations (53) and (54) gives 

 
ds a
d Vσ

=  (56) 

and 
1d

d V
λ
ω

=  (57) 

Now from equation (13) we may write 2 2 21 cosV e φ′= +  and also from equation (55) we 

may write 
2 2

2 2
2

cos cos
b V
a

φ ψ= .  Using these gives 

 
2 2

2 2 2
21 cos

b V
V e

a
ψ′= +  

Now using equations (4) and (5) gives 

 
( )

2
2 2 2 2

2

2 2 2

1 1 cos
1

1 cos

e
V e V

e
e V

ψ

ψ

= + −
−

= +
 

and ( )2 2 21 cos 1V e ψ− =  from which we obtain 

 
( )

1
22 2

1

1 cos
V

e ψ
=

−
 (58) 
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Substituting equation (58) into equations (56) and (57) gives 

 ( )
1
22 21 cos

ds
a e

d
ψ

σ
= −  (59) 

and 

 ( )
1
22 21 cos

d
e

d
λ

ψ
ω

= −  (60) 

Equations (59) and (60) are the two differential equations from which we obtain distance s 

and longitude difference ω λ− . 

 

FORMULA FOR COMPUTATION OF GEODESIC DISTANCE s 

 

P'

P'

1

2

vertex
α = 90°  

•

•

•

•

α

α

1

αE

2

σ

σ1

90
°−

 ψ
1

90°− σ1

90
°−

 ψ
2

90°−
 ψ

0

90
°

N'

H

E

geode
sic

equator auxiliary
sphere

node

ω
ω1

2

 

 

Figure 13:  Geodesic on auxiliary sphere 

 

Figure 13 shows 1P ′  and 2P ′  on an auxiliary sphere (of unit radius) where latitudes on this 

sphere are defined to be equal to parametric latitudes on the ellipsoid.  The geodesic, a 

great circle on a sphere, passing through 1P ′  and 2P ′  has azimuths Eα  at the equator E, 1α  

at 1P ′ , 2α  at 2P ′  and 90α = D  at the vertex H.   
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Note here that we have shown previously that for our auxiliary sphere, the azimuth of a 

great circle on the sphere is equal to the azimuth of the geodesic on the ellipsoid.  The 

length of the great circle arc between 1P ′  and 2P ′  is σ  and the longitudes of 1P ′  and 2P ′  

are 1ω  and 2ω .  Also note that 1σ  and 2σ  are angular distances along the great circle from 

the node E to 1P ′  and E to 2P ′  respectively and the angular distance from E to the vertex 

H is 90º.  1ψ , 2ψ  and 0ψ  are the parametric latitudes of 1P , 2P  and the vertex 

respectively, and they are also the latitudes of 1P ′ , 2P ′  and the vertex H on the auxiliary 

sphere. 

 

From the spherical triangle 1P N H′ ′  with the right-

angle at H, using the sine rule (for spherical 

trigonometry) 

 
( )

( )
( )

1

0 1

sin 90sin
sin 90 sin 90

α
ψ ψ

=
− −

D

D D  

or 1

0 1

sin 1
cos cos

α
ψ ψ

=  

so 1 1 0sin cos cosα ψ ψ=  (61) 

Note that equation (61) can also be obtained from equation (43) and at the equator where 

90ψ = D  and cos 1ψ =  we have 

 0sin cosEα ψ=  (62) 

Using Napier's Rules for circular parts in the right-angled spherical triangle 1P N H′ ′  

( ) ( )

( ) ( )1 1 1

1 1 1

1

1

sin mid-part product of tan adjacent-parts

sin 90 tan tan 90

cos tan cot

tan
tan

α ψ σ

α ψ σ

ψ
σ

=

− = −

=

=

D D

 

and 

 1
1

1

tan
tan

cos
ψ

σ
α

=  (63) 

P'1 •

α1

90
°−

 ψ
1

90°− σ1

90°−
 ψ

0

N'

H

90°− ψ0

90°− σ1

90°− α1

ψ1
90°− ψ1( )90°−
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Using Napier's Rules for circular parts in the right-angled spherical triangle 2P N H′ ′  

P'2 •

•
α 2

90
°−

 ψ
2

90°−
 ψ

0

N'

H
90°−(σ1

σ)

90°−ψ0

90°−α2

ψ2

σ 1( )90°−

90°− ψ 2( )90°−

+ σ
+

 

 

( ) ( )

( )( ) ( )

( )
2 1 0

2 1 0

sin mid-part product of cos opposite-parts

sin cos 90 cos 90

sin sin sin

ψ σ σ ψ

ψ σ σ ψ

=

= − + −

= +

D D

 (64) 

Note: The subscript 2 can be dropped and we can just refer to a general point P' and the 

distance from 1P ′  to P' is σ , hence 

 ( )1 0sin sin sinψ σ σ ψ= +  (65) 

Referring to equations (59) and (60), we need to develop an expression for 2cos ψ .  This 

can be achieved in the following manner. 

Squaring both sides of equation (65) and using the trigonometric identity 
2 2sin cos 1ψ ψ+ =  we have 

 ( )2 2 2 2
1 0sin 1 cos sin sinψ ψ σ σ ψ= − = +  

so that 

 ( )2 2 2
1 0cos 1 sin sinψ σ σ ψ= − +  (66) 

Let 

 1x σ σ= +  (67) 

and equation (66) becomes 

 2 2 2
0cos 1 sin sinxψ ψ= −  (68) 

We may now write equation (59) with dx dσ=  since 1σ  is constant, as 

 

( )

( )
( )

1
2

1
2

1
2

2 2

2 2 2
0

2 2 2 2
0

1 cos

1 1 sin sin

1 sin sin

ds a e d

a e x dx

a e e x dx

ψ σ

ψ

ψ

= −

⎡ ⎤= − −⎣ ⎦

= − +

 



 

Geodesics – Bessel's method 25 

Now using equations (4), (5) and (6) 

 
( )

( )

( )

1
2

1
2

1
2

1
2

2
2 2

02 2

2 2 2
02

2 2 2
0

1
sin sin

1 1

1 sin sin
1

1 sin sin

e
ds a x dx

e e
a

e x dx
e

b e x dx

ψ

ψ

ψ

⎛ ⎞′ ⎟⎜= + ⎟⎜ ⎟⎟⎜ ′ ′+ +⎝ ⎠

′= +
′+

′= +

 

Now, since 2e′  is a constant for the ellipsoid and 0ψ  is a constant for a particular geodesic 

we may write 

 2 2 2 2 2
0sin cos Eu e eψ α′ ′= =  (69) 

where Eα  is the azimuth of the geodesic at the node or equator crossing, and 

 ( )
1
22 21 sinds b u x dx= +  (70) 

The length of the geodesic arc s between 1P  and 2P  is found by integration as 

 ( )
1

1
2

1

2 21 sin
x

x

s b u x dx
σ σ

σ

= +

=

= +∫  (71) 

where the integration terminals are 1x σ=  and 1x σ σ= +  remembering that at 1P ′ , 

0σ =  and 1x σ= , and at 2P ′ , 1x σ σ= + . 

Equation (71) is an elliptic integral and does not have a simple closed-form solution.  

However, the integrand ( )
1
22 21 sinu x+  can be expanded in a series and then evaluated by 

term-by-term integration. 

The integrand in equation (71) can be expanded by use of the binomial series 

 ( )
0

1 n
n

n

x B xβ β
∞

=

+ = ∑  (72) 

An infinite series where n is a positive integer, β  is any real number and the binomial 

coefficients nBβ  are given by 

 
( )( )( ) ( )1 2 3 1

!n

n
B

n
β β β β β β− − − − +

=
"

 (73) 

The binomial series (72) is convergent when 1 1x− < < .  In equation (73) n! denotes n-

factorial and ( )( )( )! 1 2 3 3 2 1n n n n n= − − − ⋅ ⋅" .  zero-factorial is defined as 0 ! 1=  and 

the binomial coefficient 0 1Bβ = . 
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In the case where β  is a positive integer, say k, the binomial series (72) can be expressed 

as the finite sum 

 ( )
0

1
k

k k n
n

n

x B x
=

+ = ∑  (74) 

where the binomial coefficients k
nB  in series (74) are given by 

 
( )

!
! !

k
n

k
B

n k n
=

−
 (75) 

The binomial coefficients 
1
2
nB  for the series (72) are given by equation (73) with the 

following results for 0,1, 2 and 3n =  

 0n =  
1
2
0 1B =  

 1n =  
1
2
1

1
2

B =  

 2n =  
( )( )1

2

1 1
2 2

2

1
2! 8

B
−

= = −  

 3n =  
( )( )( )1

2

1 1 3
2 2 2

3

1
3! 16

B
− −

= =  

Inspecting the results above, we can see that the binomial coefficients 
1
2
nB  form a sequence 

 
1 1 1 1 1 3 1 1 3 5 1 1 3 5 7 1 1 3 5 7 9

1, , , , , , ,
2 2 4 2 4 6 2 4 6 8 2 4 6 8 10 2 4 6 8 10 12

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
"  

Using these results 

 

( )
1
22 2 2 2 4 4 6 6

8 8 10 10

1 1 1 1 1 3
1 sin 1 sin sin sin

2 2 4 2 4 6
1 1 3 5 1 1 3 5 7

sin sin
2 4 6 8 2 4 6 8 10

u x u x u x u x

u x u x

⋅ ⋅ ⋅
+ = + − +

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

"  (76) 

To simplify this expression, and make the eventual integration easier, the powers of sinx  

can be expressed in terms of multiple angles using the standard form 

 

( )
( ) ( )

( ) ( )

2
2 2 1

2 221 1
sin cos2 cos 2 2 cos 2 4

1 22 2

2 2
cos 2 6 1 cos2

3 1

n
n

n n

n

n nn
x nx n x n x

n

n n
n x x

n

−

⎧ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎪− ⎟ ⎟⎪ ⎜ ⎜⎟⎜ ⎪ ⎟ ⎟⎟ ⎜ ⎜= + − − + −⎜ ⎨ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟⎟ ⎪⎜ ⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪⎪⎩
⎫⎛ ⎞ ⎛ ⎞ ⎪⎟ ⎟ ⎪⎜ ⎜ ⎪⎟ ⎟⎜ ⎜− − + − ⎬⎟ ⎟⎜ ⎜⎟ ⎟ ⎪−⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠ ⎪⎪⎭

"  (77) 

Using equation (77) and the binomial coefficients 2
2

n
n

n
B

n

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 computed using equation 

(75) gives 
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 2 1 1
sin cos2

2 2
x x= −  

 4 3 1 1
sin cos 4 cos2

8 8 2
x x x= + −  

 6 5 1 3 15
sin cos 6 cos 4 cos2

16 32 16 32
x x x x= − + −  

 8 35 1 1 7 7
sin cos 8 cos6 cos 4 cos2

128 128 16 32 16
x x x x x= + − + −  

 10 63 1 5 45 15 105
sin cos10 cos 8 cos6 cos 4 cos2

256 512 256 512 64 256
x x x x x x= − + − + −  (78) 

Substituting equations (78) into equation (76) and arranging according to cos2x , cos 4x , 

etc, we obtain (Rapp 1981, p. 7-8) 

 ( )
1
22 21 sin cos2 cos 4 cos6 cos 8 cos10u x A B x C x D x E x F x+ = + + + + + +" (79) 

where the coefficients A, B, C, etc., are 

 

2 4 6 8 10

2 4 6 8 10

4 6 8 10

6 8 10

8 10

10

1 3 5 175 441
1

4 64 256 16384 65536
1 1 15 35 735
4 16 512 2048 65536

1 3 35 105
64 256 4096 16384

1 5 35
512 2048 131072

5 35
16384 65536

7
131072

A u u u u u

B u u u u u

C u u u u

D u u u

E u u

F u

= + − + − + −

= − + − + − +

= − + − + −

= − + − +

= − + −

= − +

"

"

"

"

"

"

 (80) 

Substituting equation (79) into equation (71) gives  

 { }
1

1

cos2 cos 4 cos6 cos 8 cos10s b A B x C x D x E x F x dx
σ σ

σ

+

= + + + + + +∫ "  (81) 

or 

 

1 1 1 1

1 1 1 1

1 1

1 1

cos2 cos 4 cos6

cos 8 cos10

s
A dx B x dx C x dx D x dx

b

E x dx F x dx

σ σ σ σ σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ

+ + + +

+ +

= + + +

+ +

∫ ∫ ∫ ∫

∫ ∫ "

 (82) 
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The evaluation of the integral 

 [ ] ( ){ }
1

1

1

1

1 1

1 1
cos sin sin sinnx dx nx n n

n n

σ σ
σ σ
σ

σ

σ σ σ
+

+= = + −∫  (83) 

combined with the trigonometric identity 

 ( ) ( )sin sin 2 cos sin
2 2
n n

nX nY X Y X Y
⎡ ⎤ ⎡ ⎤

− = + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

where 1X σ σ= +  and 1Y σ=  so that 12X Y σ σ+ = +  and X Y σ− =  gives 

 
1

1

2
cos cos sin

2m

n
nx dx n

n

σ σ

σ

σ σ
+

=∫  (84) 

Noting that 

 ( ) ( )1 1 1sin sin 2 cos 2 sin
2 2
n n

n nσ σ σ σ σ σ+ − = +  

and with 2 1σ σ σ= − , then ( )1 1 2 1 1 22 2σ σ σ σ σ σ σ+ = + − = +  

and putting 1 2

2m

σ σ
σ

+
=  (85) 

then 

 12 2mσ σ σ= +  (86) 

and 

 ( )1 1sin sin 2 cos sin
2m

n
n n nσ σ σ σ σ+ − =  (87) 

Using this result, equation (82) becomes 

 
( ) ( ) ( )

( ) ( )

1 1
2 3

1 1
54

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4 cos10 sin 5

m m m

m m

s
A B C D

b
E F

σ σ σ σ σ σ σ

σ σ σ σ

= + + +

+ + +"
 

or re-arranged as (Rapp 1981, equation 39, p. 9) 

 
{

}
cos2 sin cos 4 sin2 cos6 sin 3

2 3

cos 8 sin 4 cos10 sin 5
4 5

m m m

m m

C D
s b A B

E F

σ σ σ σ σ σ σ

σ σ σ σ

= + + +

+ + +"
 (88) 

Equation (88) may be modified by adopting another set of constants; defined as 

 0 2 4 6 8 10; ; ; ; ;
2 3 4 5
C D E F

B A B B B B B B= = = = = =  (89) 



 

Geodesics – Bessel's method 29 

to give 

 

{

}

0 2 4 6

8 10

2

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4 cos10 sin 5

cos2 sin

m m m

m m

n m

s b B B B B

B B

B n n

σ σ σ σ σ σ σ

σ σ σ σ

σ σ

= + + +

+ + +

+ +

"

"

 (90) 

where the coefficients 0 2 4, , ,B B B … are 

 

2 4 6 8 10
0

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10

1 3 5 175 441
1

4 64 256 16384 65536
1 1 15 35 735
4 16 512 2048 65536

1 3 35 105
128 512 8192 32768

1 5 35
1536 6144 393216

5 35
65536 262144

7
655

B u u u u u

B u u u u u

B u u u u

B u u u

B u u

B

= + − + − + −

= − + − + − +

= − + − + −

= − + − +

= − + −

= −

"

"

"

"

"

10

360
u +"

 

Since each of these convergent series is alternating, an upper bound of the error committed 

in truncating the series is the first term omitted – keeping terms up to 8u  only commits an 

error of order 10u  – and equation (90) can be approximated by 

 
{

}
0 2 4 6

8

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4

m m m

m

s b B B B B

B

σ σ σ σ σ σ σ

σ σ

= + + +

+
 (91) 

where 

 

2 4 6 8
0

2 4 6 8
2

4 6 8
4

6 8
6

8
8

1 3 5 175
1

4 64 256 16384
1 1 15 35
4 16 512 2048

1 3 35
128 512 8192

1 5
1536 6144

5
65536

B u u u u

B u u u u

B u u u

B u u

B u

= + − + −

= − + − +

= − + −

= − +

= −

 (92) 

The approximation (91) and the coefficients given by equations (92) are the same as 

Rainsford (1955, equations 18 and 19, p.15) and also Rapp (1981, equations 40 and 41, p. 

9). 
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Equation (91) can be used in two ways which will be discussed in detail later.  Briefly, 

however, the first way is in the direct problem – where s, 2u  and 1σ  are known – to solve 

iteratively for σ  (and hence mσ  from 12 2mσ σ σ= + ; and 
1

x σ σ= + ) by using Newton-

Raphson iteration for the real roots of the equation ( ) 0f σ =  given in the form of an 

iterative equation 

 ( ) ( )

( )( )
( )( )1
n

n n
n

f

f

σ
σ σ

σ+ = −
′

 (93) 

where n denotes the nth iteration and ( )f σ  can be obtained from equation (91) as 

 

( )
0 2 4 6

8

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4

m m m

m

f B B B B

s
B

b

σ σ σ σ σ σ σ σ

σ σ

= + + +

+ −
 (94) 

and the derivative ( ) ( ){ }
d

f f
d

σ σ
σ

′ =  is given by 

 ( ) ( )
1
22 21 sinf u xσ′ = +  (95) 

[Note here that ( )f σ  is the result of integrating the function ( )
1
22 21 sinu x+  with respect 

to dx; so then the derivative ( )f σ′  must be the original function.] 

An initial value, ( )1σ  (σ  for 1n = ) can be computed from ( )1
0

s
B b

σ =  and the functions 

( )( )1f σ  and ( )( )1f σ′  evaluated from equations (94) and (95) using ( )1σ .  ( )2σ  ( ) for 2nσ =  

can now be computed from equation (93) and this process repeated to obtain values 

( ) ( )3 4, ,σ σ ….  This iterative process can be concluded when the difference between ( )1nσ +  

and ( )nσ  reaches an acceptably small value. 

The second application of equation (91) is in the inverse problem where s is computed once 

σ  has been determined by spherical trigonometry. 
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FORMULA FOR COMPUTATION OF LONGITUDE DIFFERENCE BETWEEN TWO 

POINTS ON A GEODESIC 

P'1

P'2

P'
P'

i

i+1

vertex
α = 90°  

•

•
•

•

•

•

α 1

α i

αE

σ1

90
°−

 ψ
1

90°−
 ψ

0

90
°

N'

H

E

equator auxiliary
sphere

node

ω1

dω

geod
esic

dσ

 

 

Figure 14:  Geodesic on auxiliary sphere 

Figure 14 shows 1P ′  and 2P ′  on an auxiliary sphere (of unit radius) where latitudes on this 

sphere are defined to be equal to parametric latitudes on the ellipsoid.  iP ′  and 1iP+′  are 

arbitrary points on the geodesic (a great circle) between 1P ′  and 2P ′  separated by the 

angular distance dσ . 

N′

α i

P'

P'

i

i+1

•

• dσ

cosψi dω

dω

90
°−
ψ i

geodes
icQ

 

Figure 15 
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Figure 15 shows the differential spherical triangle 1i iP N P+′ ′ ′  broken into two right-angled 

spherical triangles 1i iP Q P+′ ′  and 1iQN P+′ ′ .  The great circle arc 1iQ P+′  is defined as 

1cos dψ ω , which is the differential arc length of the parallel of parametric latitude 1ψ .  

Approximating the spherical triangle 1i iP Q P+′ ′  with a plane right-angled triangle gives 

cos sini id dψ ω σ α=  and 

 
sin
cos

i

i

d d
α

ω σ
ψ

=  (96) 

From equation (43) 

 0cos
sin

cosi
i

ψ
α

ψ
=  (97) 

and substituting equation (97) into (96) gives the relationship (dropping the subscript i) 

 0
2

cos
cos

d d
ψ

ω σ
ψ

=  (98) 

Substituting equation (98) into equation (60) and re-arranging gives 

 
( )

1
22 2

0 2

1 cos
cos

cos

e
d d

ψ
λ ψ σ

ψ

−
=  (99) 

Subtracting equation (98) from equation (99) gives an expression for the difference 

between differentials of two measures of longitude; dω  on the auxiliary sphere and dλ  on 

the ellipsoid 

 
( )

1
22 2

0 2 2

1 cos 1
cos

cos cos

e
d d d

ψ
λ ω ψ σ

ψ ψ

⎡ ⎤−⎢ ⎥− = −⎢ ⎥
⎢ ⎥
⎣ ⎦

 (100) 

Equation (100) can be simplified by expanding ( )
1
22 21 cose ψ−  using the binomial series 

(72) 

 ( ) ( )
1 12 22 2 2 2

0

1 cos cos
n

n
n

e B eψ ψ
∞

=

− = −∑  

and from the previous development, the binomial coefficients 
1
2
nB  form a sequence 

 
1 1 1 1 1 3 1 1 3 5 1 1 3 5 7 1 1 3 5 7 9

1, , , , , , ,
2 2 4 2 4 6 2 4 6 8 2 4 6 8 10 2 4 6 8 10 12

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
"  
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Using these results 

 

( )
1
22 2 2 2 4 4 6 6

8 8 10 10

1 1 1 1 1 3
1 cos 1 cos cos cos

2 2 4 2 4 6
1 1 3 5 1 1 3 5 7

cos cos
2 4 6 8 2 4 6 8 10

e e e e

e e

ψ ψ ψ ψ

ψ ψ

⋅ ⋅ ⋅
− = − − −

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

" (101) 

so that  

 

( )
1
22 2

2 4 2 6 4
2 2

8 6 10 8

1 cos 1 1 1 1
cos cos

cos cos 2 8 16
5 7

cos cos
128 256

e
e e e

e e

ψ
ψ ψ

ψ ψ

ψ ψ

−
= − − −

− − +"  (102) 

Now, subtracting 
2

1
cos ψ

 from both sides of equation (102) gives a new equation whose 

left-hand-side is the term inside the brackets [ ] in equation (100), and using this result we 

may write equation (100) as 

 

{
}

2 4 2 6 4
0

8 6 10 8

1 1 1
cos cos cos

2 8 16
5 7

cos cos
128 256

d d e e e

e e d

λ ω ψ ψ ψ

ψ ψ σ

− = − − −

− − +"  (103) 

which can be re-arranged as 

 

{
}

2
2 2 4 4

0

6 6 8 8

1 1
cos 1 cos cos

2 4 8
5 7

cos cos
64 128

e
d d e e

e e d

ω λ ψ ψ ψ

ψ ψ σ

− − = + +

+ + +"  (104) 

From equations (65) and (67) we have ( )1 0sin sin sinψ σ σ ψ= +  and 1x σ σ= +  

respectively, which gives 0sin sin sinxψ ψ=  and 2 2 2 2
0sin sin sin 1 cosxψ ψ ψ= = − .  This 

result can be re-arranged as 

 2 2 2
0cos 1 sin sin xψ ψ= −  

Now ( )24 2 2
0cos 1 sin sin xψ ψ= − , ( )36 2 2

0cos 1 sin sin xψ ψ= − , ( )48 2 2
0cos 1 sin sin xψ ψ= − , 

etc., and using the binomial series (74) we may write 

 4 2 2 4 4
0 0cos 1 2 sin sin sin sinx xψ ψ ψ= − +  

 6 2 2 4 4 6 6
0 0 0cos 1 3 sin sin 3 sin sin sin sinx x xψ ψ ψ ψ= − + −  

 8 2 2 4 4 6 6 8 8
0 0 0 0cos 1 4 sin sin 6 sin sin 4 sin sin sin sinx x x xψ ψ ψ ψ ψ= − + − +  
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Substituting these relationships into equation (104) and noting that dx dσ=  gives 
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( )

( )

(

)
}

2
2 2 2

0 0

4 2 2 4 4
0 0

6 2 2 4 4 6 6
0 0 0

8 2 2 4 4
0 0

6 6 8 8
0 0

1
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2 4
1

1 2 sin sin sin sin
8
5
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64
7

1 4 sin sin 6 sin sin
128

4 sin sin sin sin

e
d d e x

e x x

e x x x

e x x

x x

dx

ω λ ψ ψ

ψ ψ

ψ ψ ψ

ψ ψ

ψ ψ

− − = + −

+ − +

+ − + −

+ − +

− +

+"  (105) 

Now, expressions for 2 4sin , sin ,x x … have been developed previously and are given in 

equations (78).  These even powers of sinx  may be substituted into equation (105) to give 

 

(

(

2
2 2

0 0

4 2
0

4
0

6 2
0

4
0

1 1 1
cos 1 1 sin cos2

2 4 2 2
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1 2 sin cos2
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3 1 1

sin cos 4 cos2
8 8 2

5 1 1
1 3 sin cos2

64 2 2
3 1 1

3 sin cos 4 cos2
8 8 2

e
d d e x

e x

x x

e x

x x

ω λ ψ ψ

ψ

ψ

ψ

ψ

⎧ ⎛ ⎞⎡ ⎤⎪⎪ ⎟⎜− − = + − −⎢ ⎥⎨ ⎟⎜ ⎟⎜⎪ ⎝ ⎠⎢ ⎥⎣ ⎦⎪⎩
⎡ ⎤

+ − −⎢ ⎥
⎢ ⎥⎣ ⎦

⎞⎡ ⎤⎟+ + −⎢ ⎥⎟⎟⎠⎢ ⎥⎣ ⎦
⎡ ⎤

+ − −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

+ + −⎢ ⎥
⎢⎣ ⎦

6
0

8 2
0

4
0

6
0

8
0

5 1 3 15
sin cos6 cos 4 cos2

16 32 16 32

7 1 1
1 4 sin cos2

128 2 2
3 1 1

6 sin cos 4 cos2
8 8 2
5 1 3 15

4 sin cos6 cos 4 cos2
16 32 16 32

35 1 1
sin cos 8 co

128 128 16

x x x

e x

x x

x x x

x

ψ

ψ

ψ

ψ

ψ

⎥
⎞⎡ ⎤⎟− − + −⎢ ⎥⎟⎟⎠⎢ ⎥⎣ ⎦

⎛ ⎡ ⎤⎜+ − −⎢ ⎥⎜⎜⎝ ⎢ ⎥⎣ ⎦
⎡ ⎤

+ + −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

− − + −⎢ ⎥
⎢ ⎥⎣ ⎦

+ + −

}

s 6

7 7
cos 4 cos2

32 16

x

x x

dx

⎡
⎢
⎢⎣

⎤
+ − ⎥

⎥⎦
+"  (106) 
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Expanding the components of equation (106) associated with the even powers of e we have 

 2 2 2
0 0

1 1 1
1 sin sin cos2

4 2 2
e xψ ψ

⎛ ⎞⎟⎜ − + ⎟⎜ ⎟⎜⎝ ⎠
  (107) 

 

(4 2 2
0 0

4 4 4
0 0 0

1
1 sin sin cos2

8
3 1 1

sin sin cos 4 sin cos2
8 8 2

e x

x x

ψ ψ

ψ ψ ψ

− +

⎞⎟+ + − ⎟⎟⎠
 (108) 

 

(6 2 2
0 0

4 4 4
0 0 0

6 6 6 6
0 0 0 0

5
1 sin sin cos2

64
9 3 3

sin sin cos 4 sin cos2
8 8 2
5 1 3 15

sin sin cos6 sin cos 4 sin cos2
16 32 16 32

e x

x x

x x x

ψ ψ

ψ ψ ψ

ψ ψ ψ ψ

− +

+ + −

⎞⎟− + − + ⎟⎟⎠
 (109) 

 

(8 2 2
0 0

4 4 4
0 0 0

6 6 6
0 0 0

6
0

8 8 8
0 0 0

8 8
0 0

7
1 sin sin cos2

128
9 3

sin sin cos 4 3 sin cos2
4 4
5 1 3

sin sin cos6 sin cos 4
4 8 4
15

sin cos2
8
35 1 1

sin sin cos 8 sin cos6
128 128 16
7 7

sin cos 4 sin cos2
132 16

e x

x x

x x

x

x x

x x

ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ

ψ ψ ψ

ψ ψ

− +

+ + −

− + −

+

+ + −

⎞⎟+ − ⎟⎟⎠
 (110) 

 

Gathering together the constant terms and the coefficients of cos2 , cos 4 , cos6 ,  etc.x x x  in 

equations (107) to (110), we can write equation (106) as 

 { }
2

0 0 2 4 6 8cos cos2 cos 4 cos6 cos 8
2
e

d d C C x C x C x C x dxω λ ψ− = + + + + +"  (111) 

where the coefficients 0 2 4, , , etc.C C C  are 
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2 4 6 8
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4 6 8 4
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0

8 8
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1 1 5 7
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4 8 64 128
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sin
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sin
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sin
16384

C e e e e

e e e e

e e e

e e
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ψ
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"

"

"

"

"

"  (112) 
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sin
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16 128 128
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e
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⎛ ⎞⎟⎜− + + + ⎟⎜ ⎟⎜⎝ ⎠
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−

"

"

"

"

"  (113) 
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0

8 8
0
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sin
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sin
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sin
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C e e e

e e

e

ψ

ψ

ψ

⎛ ⎞⎟⎜= + + + ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜− + + ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜+ + ⎟⎜ ⎟⎜⎝ ⎠

−

"

"

"

"  (114) 

 

6 8 6
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8 8
0

5 7
sin

2048 1024
7

sin
2048

C e e

e

ψ

ψ

⎛ ⎞⎟⎜= + + ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜− + ⎟⎜ ⎟⎜⎝ ⎠

+

"

"

"  (115) 

 8 8
8 0

7
sin

16384
C e ψ

⎛ ⎞⎟⎜= + −⎟⎜ ⎟⎜⎝ ⎠
" " (116) 

The longitude differences (spherical ω  minus geodetic λ ) are given by the integral 

 { }
1

1

2

0 0 2 4 6 8cos cos2 cos 4 cos6 cos 8
2

x

x

e
C C x C x C x C x dx

σ σ

σ

ω λ ψ
= +

=

Δ − Δ = + + + + +∫ "  (117) 

where 2 1ω ω ωΔ = −  is the difference in longitudes of 1P ′  and 2P ′  on the auxiliary sphere 

and 2 1λ λ λΔ = −  is the difference in longitudes of 1P  and 2P  on the ellipsoid. 
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Equation (117) has a similar form to equation (81) and the solution of the integral in 

equation (117) can be achieved by the same method used to solve the integral in equation 

(81).  Hence, similarly to equation (88) and also Rapp (1981 equation (55), p. 13) 

 
{

}

2
4

0 0 2

6 8

cos cos2 sin cos 4 sin2
2 2

cos6 sin 3 cos 8 sin 4
3 4

m m

m m

e C
C C

C C

ω λ ψ σ σ σ σ σ

σ σ σ σ

Δ − Δ = + +

+ + +"
 (118) 

Rainsford (1955, p. 14, equations 10 and 11) has the differences in longitudes ω λΔ − Δ  as 

a function of the flattening f and the azimuth of the geodesic at the equator Eα ; noting 

that from either equations (61) or (69) we may obtain the relationships 

 0sin cosEα ψ=  (119) 

 2 2
01 sin sinEα ψ− =  (120) 

Also, since ( )2 22 2e f f f f= − = − , even powers of the eccentricity e can be expressed as 

functions of the flattening f 

 

2 2

4 2 3 4

6 3 4 5 6

8 4 5 6 7 8

2

4 4

8 12 6

16 32 24 8

e f f

e f f f

e f f f f

e f f f f f

= −

= − +

= − + −

= − + − +

 (121) 

Re-arranging equation (118) and using equation (119) gives 

 

2 2 2

0 2 4

2 2

6 8

sin cos2 sin cos 4 sin2
2 2 4

cos6 sin 3 cos 8 sin 4
6 8

E m m

m m

e e e
C C C

e e
C C

ω λ α σ σ σ σ σ

σ σ σ σ

⎧⎪⎪Δ − Δ = + +⎨⎪⎪⎩
⎫⎪⎪+ + + ⎬⎪⎪⎭

"  (122) 

Now, with equations (112) and (120) the coefficient 
2

02
e

C  can be written as 

 

( )

( )

( )

2 2
4 6 8

0

4 6 8 2

26 8 2

38 2

1 1 5
2 2 8 16 128

1 1 15
1 sin

16 16 256
3 45

1 sin
128 1024
25

1 sin
2048

E

E

E

e e
C e e e

e e e

e e

e

α

α

α

= + + + +

⎛ ⎞⎟⎜− + + −⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜+ + + −⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜− + −⎟⎜ ⎟⎜⎝ ⎠

+

"

"

"

"

"  (123) 
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noting here that terms greater than 8e  have been ignored. 

Using equations (121) in equation (123) with the trigonometric identity 
2 2cos sin 1E Eα α+ =  gives 

 

2
5

0

2 3 4 5 2

3 4 5 4

4 5 6

7
2 8

1 1 1 3
cos

4 4 4 2
3 27 81

cos
16 64 64
25 25

cos
128 64

E

E

E

e
C f f

f f f f

f f f

f f

α

α

α

= − +

⎛ ⎞⎟⎜− + + − + ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜+ + − + ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜− − + ⎟⎜ ⎟⎜⎝ ⎠

+

"

"

"

"

"  (124) 

Now for any geodetic ellipsoid 8 2.01e-009e �  and 4 1.26e-010f � , and since terms greater 

than 8e  have been ignored in the development of equation (123) then no additional errors 

will be induced by ignoring terms greater than 4f  in equation (124).  Hence we define 

 

( ){

}

2
2 2

0

2 4

3 6

1
1 1 cos

2 4
3 9

1 cos
16 4
25

cos
128

E

E

E

e
C f f f f

f f

f

α

α

α

≡ − + +

⎛ ⎞⎟⎜+ + ⎟⎜ ⎟⎜⎝ ⎠

−  (125) 

Using similar reasoning we also define 

 ( )
2

2 2 2 4 3 6
2

1 1 9 75
1 cos 1 cos cos

2 4 4 4 256E E E

e
C f f f f f f fα α α

⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜≡ + + − + +⎨ ⎬⎟⎜ ⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
 (126) 

 
2

2 4 3 6
4

1 9 15
1 cos cos

4 32 4 256E E

e
C f f f fα α

⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜≡ + −⎨ ⎬⎟⎜ ⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
 (127) 

 { }
2

3 6
6

5
cos

6 768 E

e
C f f α≡   (128) 

Using equations (125) to (128) enables equation (122) to be approximated by 
 

 { }0 2 4 6sin cos2 sin cos 4 sin2 cos6 sin 3E m m mf A A A Aω λ α σ σ σ σ σ σ σΔ − Δ = + + +  (129) 

 

where 2 1ω ω ωΔ = −  is the difference in longitudes of 1P ′  and 2P ′  on the auxiliary sphere 

and 2 1λ λ λΔ = −  is the difference in longitudes of 1P  and 2P  on the ellipsoid, and the 

coefficients are 
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32 4 256
5
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E

A f f f f f f

A f f f f f f

A f f f
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α α α

α α α

α α

α

⎛ ⎞⎟⎜= − + + + + −⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜= + + − + +⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜= + −⎟⎜ ⎟⎜⎝ ⎠

=

 (130) 

The approximation (129) and the coefficients (130) are the same as Rainsford (1955, 

equations 10 and 11, p. 14) and also Rapp (1981, equation 56, p. 13). 

Equation (129) can be used in two ways which will be discussed in detail later.  Briefly, 

however, the first way is in the direct problem – after σ  (and mσ  from 12 2mσ σ σ= + ) 

has been solved iteratively – to compute the difference ω λΔ − Δ .  And in the inverse 

problem to compute the longitude difference iteratively. 

 

VINCENTY'S MODIFICATIONS OF RAINSFORD'S EQUATIONS 

In 1975, T. Vincenty (1975) produced other forms of equations (91) and (129) more suited 

to computer evaluation and requiring a minimum of trigonometric function evaluations.  

These equations may be obtained in the following manner. 

 

Vincenty's modification of Rainsford's equation for distance 

The starting point here is equation (91) [Rainsford's equation for distance] that can be re-

arranged as 

 

2 4 6

0 0 0 0

8

0

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4

m m m

m

s B B B
bB B B B

B
B

σ σ σ σ σ σ σ

σ σ

= − − −

−  (131) 

or 

 
0

s
bB

σ σ= +Δ  (132) 

where 
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2 4 6

0 0 0

8

0

cos2 sin cos 4 sin2 cos6 sin 3

cos 8 sin 4

m m m

m

B B B
B B B

B
B

σ σ σ σ σ σ σ

σ σ

Δ = − − −

−  (133) 

Now, from equations (92) 2 4 6 8
0

1 3 5 175
1 1

4 64 256 16384
B u u u u x= + − + − = +  and 

( ) 1

0

1
1 x

B
−= + .  Using a special case of the binomial series [equation (72) with 1β = −  and 

with 1x < ] 

 ( ) 1 2 3 41 1x x x x x−+ = − + − + −" 

allows us to write 
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4
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1
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4 64
1 7 15 579

1
4 64 256 16384
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B
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= − + − + −

" " "

" "

"  

and using this result gives 
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1 1 37 47
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B
u u u u u u u u
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Similarly, the other ratios are obtained and 
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0

4 6 84

0
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65536
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B

B
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B
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"

"

"
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 (134) 

For a geodesic on the GRS80 ellipsoid, having 0Eα = D  (which makes 2u  a maximum) and 

with 22.5 , 22.5mσ σ= =D D  (which makes cos 8 sin 4 1mσ σ = ) the maximum value of the 

last term in equations (131) and (133) is 8

0

cos 8 sin 4 1.5739827e-013 radiansm

B
B

σ σ = . 
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This is equivalent to an arc length of 0.000001 m on a sphere of radius 6378137 m.  This 

term will be ignored and σΔ  is defined as 

 2 4 6

0 0 0

cos2 sin cos 4 sin2 cos6 sin 3m m m

B B B
B B B

σ σ σ σ σ σ σΔ ≡ − − −  (135) 

Now, using the trigonometric identities 
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then 
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3

cos 4 2 cos 2 1

cos6 4 cos 2 3 cos2

A A

A A A

= −

= −
 

and using these identities in equation (135) gives 
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which may be written as 
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 (136) 

Now 
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 (137) 

Comparing equations (137) with equations (134) we have 
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and these two equations differ by 81
4096

u  which would be equivalent to a maximum error 

of 5.0367e-013 radians or 0.000003 m on a sphere of radius 6378137 m.  Ignoring this small 

difference, we define 
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 (138) 

Again, comparing equations (137) with equations (134) we have 
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and noting that 8 81 3
1024 3072

u u=  we may say 
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 (139) 

Using equations (138) and (139) we may write equation (136) as 
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We may now express the great circle arc length σ  as 
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bA
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′
 (140) 

 

where 
 

 
( ){

( )( )

2

2 2

1
sin cos2 cos 2 cos 2 1

4
1

cos2 3 4 sin 3 4 cos 2
6

m m

m m

B B

B

σ σ σ σ σ

σ σ σ

⎡′ ′Δ = + −⎢⎣

⎫⎤⎪⎪′− − + − + ⎥⎬⎪⎥⎦⎪⎭

 (141) 

 

and 
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 ( )( )( )

2 4 6 8
0

2 4 6 8

2
2 2 2

1 3 5 175
1

4 64 256 16384
4096 768 320 175

1
16384 16384 16384 16384

1 4096 768 320 175
16384

A B u u u u

u u u u

u
u u u

′ = = + − + −

= + − + −

= + + − + −  (142) 

 ( )( )( )

2 4 6 82

0

2 4 6 8

2
2 2 2

1 1 37 47
4 8 512 1024
256 128 74 47
1024 1024 1024 1024

256 128 74 47
1024

B
B u u u u

B

u u u u

u
u u u

−′ = = − + −

= − + −

= + − + −  (143) 

Equations (140) to (143) are the same as those given by Vincenty (1975, equations 7, 6, 3 

and 4, p. 89).  Vincenty notes in his paper that these equations were derived from 

Rainsford's inverse formula and that most significant terms in 8u  were retained, but he 

gave no outline of his method. 

 

Vincenty's modification of Rainsford's equation for longitude difference 

The starting point here is equation (129) [Rainsford's equation for longitude differences] 

with coefficients 0 2 4 6, ,  and A A A A .  Referring to this equation, Rainsford (1955, p. 14) 

states: 

“The A coefficients are given as functions of f since they converge more rapidly than when 

given as functions of 2e .  The maximum value of any term in 4f  (i.e. 3f  in the A's) is less 

than 0 .00001′′  even for a line half round the world.  Thus the 6A  term may be omitted 

altogether and the following simplified forms used even for precise results:” 

Rainsford's simplified formula is 

 { }0 2 4sin cos2 sin cos 4 sin2E m mf A A Aω λ α σ σ σ σ σ′ ′ ′Δ − Δ = + +  (144) 

where 2 1ω ω ωΔ = −  is the difference in longitudes of 1P ′  and 2P ′  on the auxiliary sphere 

and 2 1λ λ λΔ = −  is the difference in longitudes of 1P  and 2P  on the ellipsoid, and the 

coefficients are 
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( )

( )

2 2 4
0

2 2 4
2

2 4
4

1 3
1 1 cos cos

4 16
1 1

1 cos cos
4 4
1

cos
32

E E

E E

E

A f f f

A f f f

A f

α α

α α

α

′ = − + −

′ = + −

′ =

 (145) 

Equation (144) can be written as 

 2 4
0

0 0

sin cos2 sin cos 4 sin2E m m

A A
A f

A A
ω λ α σ σ σ σ σ

⎧ ⎫′ ′⎪ ⎪⎪ ⎪′Δ − Δ = + +⎨ ⎬⎪ ⎪′ ′⎪ ⎪⎩ ⎭
 (146) 

Using the trigonometric double angle formulas sin2 2 sin cosA A A= , 2cos2 2 cos 1A A= −  

we can write 

 
2

sin2 2 sin cos

cos 4 2 cos 2 1m m

σ σ σ

σ σ

=

= −
 

and equation (146) becomes 

 

( )( )

( )

22 4
0

0 0

22 4
0

0 0

sin cos2 sin 2 cos 2 1 2 sin cos

sin sin cos2 2 cos 2 cos 2 1

E m m

E m m

A A
A f

A A

A A
A f

A A

ω λ α σ σ σ σ σ σ

α σ σ σ σ σ

⎧ ⎫′ ′⎪ ⎪⎪ ⎪′Δ − Δ = + + −⎨ ⎬⎪ ⎪′ ′⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤⎪ ⎪′ ′⎪ ⎪⎢ ⎥′= + + −⎨ ⎬⎢ ⎥⎪ ⎪′ ′⎪ ⎪⎣ ⎦⎩ ⎭

 (147) 

Now the coefficient 0A′  may be re-arranged as follows 

 

( )

( )

( )( )

( )( )

2 2 4
0

2 2 4

2 2

2 2

1 3
1 1 cos cos

4 16
4 3

1 1 cos cos
16 16

1 cos 4 1 3 cos
16

1 cos 4 4 3cos
16

E E

E E

E E

E E

A f f f

f f f

f
f f

f
f

α α

α α

α α

α α

′ = − + +

⎛ ⎞⎟⎜= − + − ⎟⎜ ⎟⎜⎝ ⎠

= − + −

= − + −

 

or 

 0 1A C′ = −  

where 

 ( )( )2 2cos 4 4 3cos
16 E E

f
C fα α= + −  

Now using these relationships and a special result of the binomial series [equation (72) 

with x C= −  and 1β = − ] we may write 
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 ( ) 1 2 3

0

1 1
1 1

1
C C C C

A C
−= = − = + + + +

′ −
" 

and 

 2 2 2 2 4 3 42

0

1 1 3 1
cos cos cos cos

4 4 16 8E E E E

A
f f f f

A
α α α α

′
= + − + +

′
" 

Ignoring terms greater than 3f  (greater than 2 2

0

 in 
A

f
A

′
′
) we have 

 ( )( )

2 2 2 2 42

0

2 2

1 1 3
cos cos cos

4 4 16

cos 4 4 3cos
16

E E E

E E

A
f f f

A

f
f

C

α α α

α α

′
≡ + −

′

= + −

=

 

Also 

 2 4 3 64

0

1 1
cos cos

32 128E E

A
f f

A
α α

′
= + +

′
"  

and ignoring terms greater than 3f  (greater than 2 4

0

 in 
A

f
A

′
′
) we have 

 2 4 2 44 4

0 0

1 1
cos    and   2 cos

32 16E E

A A
f f

A A
α α

′ ′
≡ =

′ ′
 

Now 

 2 2 4 3 4 3 61 1 3
cos cos cos

16 8 32E E EC f f fα α α= + − +" 

and ignoring terms greater than 3f  (greater than 2 2 in f C ) we have 

 2 2 4 4

0

1
cos 2

16 E

A
C f

A
α

′
≡ =

′
 

Using these results we may write equation (147) as 
 

 ( ) ( ){ }21 sin sin cos2 cos 1 2 cos 2E m mC f C Cλ ω α σ σ σ σ σ⎡ ⎤Δ = Δ − − + + − +⎢ ⎥⎣ ⎦  (148) 

 

where 2 1ω ω ωΔ = −  is the difference in longitudes of 1P ′  and 2P ′  on the auxiliary sphere 

and 2 1λ λ λΔ = −  is the difference in longitudes of 1P  and 2P  on the ellipsoid, and 

 ( )( )2 2cos 4 4 3cos
16 E E

f
C fα α= + −  (149) 
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Equations (148) and (149) are essentially the same as Vincenty (1975, equations 11 and 10, 

p.89) – Vincenty uses L and λ  where we have used λΔ  and ωΔ  respectively – although 

he gives no outline of his method of deriving his equations from Rainsford's. 

 

SOLVING THE DIRECT AND INVERSE PROBLEMS ON THE ELLIPSOID USING 

VINCENTY'S EQUATIONS 

Vincenty (1975) set out methods of solving the direct and inverse problems on the 

ellipsoid.  His methods were different from those proposed by Rainsford (1955) even 

though his equations (140) to (143) for spherical arc length σ  and (148) and (149) for 

longitude λ  were simplifications of Rainsford's equations.  His approach was to develop 

solutions more applicable to computer programming rather than the mechanical methods 

used by Rainsford.  Vincenty's method relies upon the auxiliary sphere and there are 

several equations using spherical trigonometry.  Since distances are often small when 

compared with the Earth's circumference, resulting spherical triangles can have very small 

sides and angles.  In such cases, usual spherical trigonometry formula, e.g., sine rule and 

cosine rule, may not furnish accurate results and other, less common formula, are used.  

Vincenty's equations and his methods are now widely used in geodetic computations. 

In the solutions of the direct and inverse problems set out in subsequent sections, the 

following notation and relationships are used. 

 a, f semi-major axis length and flattening of ellipsoid. 

 b semi-minor axis length of the ellipsoid, ( )1b a f= −  

 2e  eccentricity of ellipsoid squared, ( )2 2e f f= −  

 2e ′  2nd-eccentricity of ellipsoid squared, 
2

2
21

e
e

e
′ =

−
 

 ,φ λ  latitude and longitude on ellipsoid:  measured 0  to 90φ ±D D  (north latitudes 

  positive and south latitudes negative) and  measured 0  to 180λ ±D D  (east  

  longitudes positive and west longitudes negative). 

 s length of the geodesic on the ellipsoid. 

 1 2,α α  azimuths of the geodesic, clockwise from north 0  to 360D D ; 2α  in the direction 

  1 2PP  produced. 
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 12α  azimuth of geodesic 1 2PP ; 12 1α α=  

 21α  reverse azimuth; azimuth of geodesic 2 1P P ; 21 2 180α α= ± D  

 Eα  azimuth of geodesic at the equator, 0sin cosEα ψ=  

 2u  2 2
0sine ψ′=  

 ψ  parametric latitude, ( )tan 1 tanfψ φ= −  

 0ψ  parametric latitude of geodesic vertex, 0cos cos sin sin Eψ ψ α α= =  

 ,ψ ω  latitude and longitude on auxiliary sphere:  measured 0  to 90ψ ±D D  (north  

  latitudes positive and south latitudes negative) and  measured 0  to 180ω ±D D  

  (east longitudes positive and west longitudes negative). 

 ,λ ωΔ Δ  longitude differences; 2 1λ λ λΔ = −  (ellipsoid) and 2 1ω ω ωΔ = −  (spherical) 

 σ  angular distance (great circle arc) 1 2P P′ ′  on the auxiliary sphere. 

 1σ  angular distance from equator to 1P ′  on the auxiliary sphere, 1
1

1

tan
tan

cos
ψ

σ
α

=  

 mσ  angular distance from equator to mid-point of great circle arc 1 2P P′ ′  on the 

  auxiliary sphere, 12 2mσ σ σ= +  

 

THE DIRECT PROBLEM ON THE ELLIPSOID USING VINCENTY'S EQUATIONS 

Using Vincenty's equations the direct problem on the ellipsoid 

[given latitude and longitude of 1P  on the ellipsoid and azimuth 12α  and geodesic 

distance s to 2P  on the ellipsoid, compute the latitude and longitude of 2P  and the 

reverse azimuth 21α ] 

may be solved by the following sequence. 

With the ellipsoid constants ( ) ( )
2

2 2
2, , 1 , 2  and 

1
e

a f b a f e f f e
e

′= − = − =
−

 and given 

1 1 1 12, ,φ λ α α=  and s 

1. Compute parametric latitude 1ψ  of 1P  from 

 ( )1 1tan 1 tanfψ φ= −  
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2. Compute the parametric latitude of the geodesic vertex 0ψ  from 

 0 1 1cos cos sinψ ψ α=  

3. Compute the geodesic constant 2u  from 

 2 2 2
0sinu e ψ′=  

4. Compute angular distance 1σ  on the auxiliary sphere from the equator to 1P ′  from 

 1
1

1

tan
tan

cos
ψ

σ
α

=  

5. Compute the azimuth of the geodesic at the equator Eα  from 

 0 1 1sin cos cos sinEα ψ ψ α= =  

6. Compute Vincenty's constants A′  and B ′  from 

 

( )( )( )

( )( )( )

2
2 2 2

2
2 2 2

1 4096 768 320 175
16384

256 128 74 47
1024

u
A u u u

u
B u u u

′ = + + − + −

′ = + − + −  

7. Compute angular distance σ  on the auxiliary sphere from 1P ′  to 2P ′  by iteration 

using the following sequence of equations until there is negligible change in σ  

 

( ){
( )( )

1

2

2 2

2 2

1
sin cos2 cos 2 cos 2 1

4
1

cos2 3 4 sin 3 4 cos 2
6

m

m m

m m

B B

B

s
bA

σ σ σ

σ σ σ σ σ

σ σ σ

σ σ

= +

⎡′ ′Δ = + −⎢⎣

⎫⎤⎪⎪′− − + − + ⎥⎬⎪⎥⎦⎪⎭

= + Δ
′

 

 The first approximation for σ  in this iterative solution can be taken as 
s

bA
σ

′
�  

8. After computing the spherical arc length σ  the latitude of 2P  can be computed using 

spherical trigonometry and the relationship 
( )

2
2

tan
tan

1 f
ψ

φ =
−

 

 
( ) ( )

1 1 1
2 22

1 1 1

sin cos cos sin cos
tan

1 sin sin sin cos cos cosEf

ψ σ ψ σ α
φ

α ψ σ ψ σ α

+
=

− + −
 

9. Compute the longitude difference ωΔ  on the auxiliary sphere from 

 1

1 1 1

sin sin
tan

cos cos sin sin cos
σ α

ω
ψ σ ψ σ α

Δ =
−
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10. Compute Vincenty's constant C from 

 ( )( )2 2cos 4 4 3cos
16 E E

f
C fα α= + −  

11. Compute the longitude difference λΔ  on the ellipsoid from 

 ( ) ( ){ }21 sin sin cos2 cos 1 2 cos 2E m mC f C Cλ ω α σ σ σ σ σ⎡ ⎤Δ = Δ − − + + − +⎢ ⎥⎣ ⎦  

12. Compute azimuth 2α  from 

 2
1 1 1

sin
tan

cos cos cos sin sin
Eαα

ψ σ α ψ σ
=

−
 

13. Compute reverse azimuth 21α  

 21 2 180α α= ± D  

 

Shown below is the output of a MATLAB function Vincenty_Direct.m that solves the 

direct problem on the ellipsoid. 

The ellipsoid is the GRS80 ellipsoid and ,φ λ  for 1P  are 45− D  and 132D  respectively with 

12 1 43 25.876544α ′ ′′= D  and 3880275.684153 ms = .  ,φ λ  computed for 2P  are 10− D  and 

133D  respectively with the reverse azimuth 21 181 14 22.613213α ′ ′′= D  
 
>> Vincenty_Direct 
 
///////////////////////////////////////////////// 
// DIRECT CASE on ellipsoid: Vincenty's method // 
///////////////////////////////////////////////// 
 
ellipsoid parameters 
a    =  6378137.000000000 
f    = 1/298.257222101000 
b    =  6356752.314140356100 
e2   =  6.694380022901e-003 
ep2  =  6.739496775479e-003 
 
Latitude & Longitude of P1 
latP1 = -45  0  0.000000 (D M S) 
lonP1 = 132  0  0.000000 (D M S) 
 
Azimuth & Distance P1-P2 
az12 =    1 43 25.876544 (D M S) 
s    =    3880275.684153 
 
Parametric Latitude of P1 
psiP1 = -44 54 13.636256 (D M S) 
 
Parametric Latitude of vertex P0 
psiP0 =  88 46 44.750547 (D M S) 
 
Geodesic constant u2 (u-squared) 
u2 =  6.736437077728e-003 
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angular distance on auxiliary sphere from equator to P1' 
sigma1 = -7.839452835875e-001 radians 
 
Vincenty's constants A and B 
A =  1.001681988050e+000 
B =  1.678458818215e-003 
 
angular distance sigma on auxiliary sphere from P1' to P2' 
sigma =  6.099458753810e-001 radians 
iterations =  5 
 
Latitude of P2 
latP2 = -10  0  0.000000 (D M S) 
 
Vincenty's constant C 
C =  8.385253517062e-004 
 
Longitude difference P1-P2 
dlon =   1  0  0.000000 (D M S) 
 
Longitude of P2 
lon2 = 133  0  0.000000 (D M S) 
 
Reverse azimuth 
alpha21 = 181 14 22.613213 (D M S) 
 
>> 
 
 
 

THE INVERSE PROBLEM ON THE ELLIPSOID USING VINCENTY'S EQUATIONS 

Using Vincenty's equations the inverse problem on the ellipsoid 

[given latitudes and longitudes of 1P  and 2P  on the ellipsoid compute the forward 

and reverse azimuths 12α  and 21α  and the geodesic distance s] 

may be solved by the following sequence. 

With the ellipsoid constants ( ) ( )
2

2 2
2

, , 1 , 2  and 
1

e
a f b a f e f f e

e
′= − = − =

−
 and given 

1 1 2 2,  and ,φ λ φ λ  

1. Compute parametric latitudes 1 2 and ψ ψ  of 1P  and 2P  from 

 ( )tan 1 tanfψ φ= −  

2. Compute the longitude difference λΔ  on the ellipsoid 

 2 1λ λ λΔ = −  
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3. Compute the longitude difference ωΔ  on the auxiliary sphere between 1P ′  to 2P ′  by 

iteration using the following sequence of equations until there is negligible change in 

ωΔ .  Note that σ  should be computed using the atan2 function after evaluating 
2sin sinσ σ=  and cosσ .  This will give 180 180σ− < ≤D D . 

 

( ) ( )

( )( )

( )

2 22
2 1 2 1 2

1 2 1 2

1 2

1 2
2

2 2

sin cos sin cos sin sin cos cos

cos sin sin cos cos cos

sin
tan

cos
cos cos sin

sin
sin
2 sin sin

cos2 cos
cos

cos 4 4 3 cos
16

1 sin sin cos2 cos

E

m
E

E E

E m

f
C f

C f C C

σ ψ ω ψ ψ ψ ψ ω

σ ψ ψ ψ ψ ω

σ
σ

σ
ψ ψ ω

α
σ
ψ ψ

σ σ
α

α α

ω λ α σ σ σ σ

= Δ + − Δ

= + Δ

=

Δ
=

= −

= + −

Δ = Δ + − + + ( ){ }21 2 cos 2 mσ⎡ ⎤− +⎢ ⎥⎣ ⎦

 

 The first approximation for ωΔ  in this iterative solution can be taken as ω λΔ Δ�  

4. Compute the parametric latitude of the geodesic vertex 0ψ  from 

 0cos sin Eψ α=  

5. Compute the geodesic constant 2u  from 

 2 2 2
0sinu e ψ′=  

6. Compute Vincenty's constants A′  and B ′  from 

 

( )( )( )

( )( )( )

2
2 2 2

2
2 2 2

1 4096 768 320 175
16384

256 128 74 47
1024

u
A u u u

u
B u u u

′ = + + − + −

′ = + − + −  

7. Compute geodesic distance s from 

 

( ){
( )( )

( )

2

2 2

1
sin cos2 cos 2 cos 2 1

4
1

cos2 3 4 sin 3 4 cos 2
6

m m

m m

B B

B

s bA

σ σ σ σ σ

σ σ σ

σ σ

⎡′ ′Δ = + −⎢⎣

⎫⎤⎪⎪′− − + − + ⎥⎬⎪⎥⎦⎪⎭
= − Δ  

8. Compute the forward azimuth 12 1α α=  from 

 2
1

1 2 1 2

cos sin
tan

cos sin sin cos cos
ψ ω

α
ψ ψ ψ ψ ω

Δ
=

− Δ
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9. Compute azimuth 2α  from 

 1
2

1 2 1 2

cos sin
tan

sin cos cos sin cos
ψ ω

α
ψ ψ ψ ψ ω

Δ
=

− + Δ
 

10. Compute reverse azimuth 21α  

 21 2 180α α= ± D  

 

Shown below is the output of a MATLAB function Vincenty_Inverse.m that solves the 

inverse problem on the ellipsoid. 

The ellipsoid is the GRS80 ellipsoid.  ,φ λ  for 1P  are 10− D  and 110D  respectively and ,φ λ  

for 2P  are 45− D  and 155D  respectively.  Computed azimuths are 12 140 30 03.017703α ′ ′′= D  

and 21 297 48 47.310738α ′ ′′= D , and geodesic distance 5783228.548429 ms = . 

 
>> Vincenty_Inverse 
 
//////////////////////////////////////////////////// 
// INVERSE CASE on ellipsoid: Vincenty's method // 
//////////////////////////////////////////////////// 
 
ellipsoid parameters 
a    =  6378137.000000000 
f    = 1/298.257222101000 
b    =  6356752.314140356100 
e2   =  6.694380022901e-003 
ep2  =  6.739496775479e-003 
 
Latitude & Longitude of P1 
latP1 = -10  0  0.000000 (D M S) 
lonP1 = 110  0  0.000000 (D M S) 
 
Latitude & Longitude of P2 
latP2 = -45  0  0.000000 (D M S) 
lonP2 = 155  0  0.000000 (D M S) 
 
Parametric Latitudes of P1 and P2 
psiP1 =  -9 58  1.723159 (D M S) 
psiP2 = -44 54 13.636256 (D M S) 
 
Longitude difference on ellipsoid P1-P2 
dlon =  45  0  0.000000 (D M S) 
 
Longitude difference on auxiliary sphere P1'-P2' 
domega =  9.090186019005e-001 radians 
iterations =  5 
 
Parametric Latitude of vertex P0 
psiP0 =  51 12 36.239192 (D M S) 
 
Geodesic constant u2 (u-squared) 
u2 =  4.094508823114e-003 
 
Vincenty's constants A and B 
A =  1.001022842684e+000 
B =  1.021536528199e-003 
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Azimuth & Distance P1-P2 
az12 =  140 30  3.017703 (D M S) 
s    =    5783228.548429 
 
Reverse azimuth 
alpha21 = 297 48 47.310738 (D M S) 
 
>> 
 

 

EXCEL WORKBOOK vincenty.xls FROM GEOSCIENCE AUSTRALIA  

Geoscience Australia has made available an Excel workbook vincenty.xls containing four 

spreadsheets labelled Ellipsoids, Direct Solution, Inverse Solution and Test Data.  The Direct Solution 

and Inverse Solution spreadsheets are implementations of Vincenty's equations.  The Excel 

workbook vincenty.xls can be downloaded via the Internet at the Geoscience Australia 

website (http://www.ga.gov.au/) following the links to Geodetic Calculations then Calculate 

Bearing Distance from Latitude Longitude.  At this web page the spreadsheet vincenty.xls is 

available for use or downloading.  Alternatively, the Intergovernmental Committee on 

Surveying and Mapping (ICSM) has produced an on-line publication Geocentric Datum of 

Australia Technical Manual Version 2.2 (GDA Technical Manual, ICSM 2002) with a link 

to vincenty.xls. 

The operation of vincenty.xls is relatively simple, but since the spreadsheets use the Excel 

solver for the iterative solutions of certain equations then the Iteration box must be checked 

on the Calculation sheet.  The Calculation sheet is found under Tools/Options on the Excel 

toolbar.  Also, on the Calculation sheet make sure the Maximum change box has a value of 

0.000000000001. 

The Direct Solution and Inverse Solution spreadsheets have statements that the spreadsheets 

have been tested in the Australian region but not exhaustively tested worldwide. 

To test vincenty.xls, direct and inverse solutions between points on a geographic rectangle 

ABCD covering Australia were computed using vincenty.xls and MATLAB functions 

Vincenty_Direct.m and Vincenty_Inverse.m.  Figure 16 shows the geographic rectangle 

ABCD whose sides are the meridians of longitude 110D  and 155D  and parallels of latitude 

10− D  and 45− D .  Several lines were chosen on and across this rectangle. 
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Figure 16:  Geographic rectangle covering Australia 
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=
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α
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α
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α

α
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Table 1:  Geodesic curves between 1P  and 2P  on the GRS80 ellipsoid 
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Table 1 shows a number of long geodesics that are either bounding meridians of the 

rectangle or geodesics crossing the rectangle.  All of these results have been computed 

using the MATLAB function Vincenty_Inverse.m and verified by using the MATLAB 

function Vincenty_Direct.m.  Each of the lines were then computed using the Inverse 

Solution spreadsheet of the Excel workbook vincenty.xls; all azimuths were identical and the 

differences between distances were 0.000002 m on one line and 0.000001 m on two other 

lines.  Each of the lines were then verified by using the Direct Solution spreadsheet (all 

computed latitudes and longitudes we in exact agreement).  It could be concluded that the 

Excel workbook vincenty.xls gives results accurate to at least the 5th decimal of distance and 

the 6th decimal of seconds of azimuth for any geodesic in Australia. 

Vincenty (1975) verifies his equations by comparing his results with Rainsford's over five 

test lines (Rainsford 1955).  On one of these lines – line (a) 1 55 45φ ′= D , 1 0 00λ ′= D , 

12 96 36 08.79960α ′ ′′= D , 14110526.170 ms =  on Bessel's ellipsoid 6377397.155 ma =  

1 299.1528128f =  – Vincenty finds his direct solution gives 2 33 26 00.000012φ ′ ′′= − D , 

2 108 13 00.000007λ ′ ′′= D  and 21 137 52 22.014528α ′ ′′= D .  We can confirm that the 

MATLAB function Vincenty_Direct.m also gives these results, but it is interesting to note 

that the Direct Solution spreadsheet of the Excel workbook vincenty.xls does not give these 

results.  This is due to the Excel solver – used to determine a value by iteration – 

returning an incorrect value.  Whilst the error in the Excel solver result is small, it is, 

nonetheless, significant and users should be aware of the likelihood or erroneous results 

over very long geodesics using vincenty.xls. 

 

MATLAB FUNCTIONS 

Shown below are two MATLAB functions Vincenty_Direct.m and Vincenty_Inverse.m 

that have been written to test Vincenty's equations and his direct and inverse methods of 

solution.  Both functions call another function DMS.m that is also shown. 
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MATLAB function Vincenty_Direct.m 
 
 
function Vincenty_Direct 
%  Vincenty_Direct computes the "direct case" on the ellipsoid using 
%  Vinventy's method. 
%  Given the size and shape of the ellipsoid and the latitude and  
%  longitude of P1 and the azimuth and geodesic distance of P1 to P2,  
%  this function computes the latitude and longitude of P2 and the  
%  reverse azimuth P2 to P1. 
  
%============================================================================ 
% Function:  Vincenty_Direct 
% 
% Useage:    Vincenty_Direct; 
% 
% Author: 
%  Rod Deakin,  
%  Department of Mathematical and Geospatial Sciences,  
%  RMIT University, 
%  GPO Box 2476V, MELBOURNE VIC 3001 
%  AUSTRALIA 
%  email: rod.deakin@rmit.edu.au 
% 
% Date: 
%  Version 1.0   2 March 2008 
% 
% Functions Required: 
%      [D,M,S] = DMS(DecDeg) 
% 
% Remarks:   
%  This function computes the DIRECT CASE on the ellipsoid.  Given the size 
%  and shape of an ellipsoid (defined by parameters a and f, semi-major 
%  axis and flattening respectively) and the latitude and longitude of P1 
%  and the azimuth (az12) P1 to P2 and the geodesic distance (s) P1 to P2,  
%  the function computes the latitude and longitude of P2 and the reverse 
%  azimuth (az21) P2 to P1.  Latitudes and longitudes of the geodesic 
%  vertices P0 and P0' are also output as well as distances and longitude 
%  difference from P1 and P2 to the relevant vertices. 
% 
% References: 
%  [1] Deakin, R.E, and Hunter, M.N., 2007. 'Geodesics on an Ellipsoid - 
%         Bessels' Method', School of Mathematical and Geospatial Sciences, 
%         RMIT University, January 2007. 
%  [2] Vincenty, T., 1975. 'Direct and Inverse solutions of geodesics on  
%         the ellipsoid with application of nested equations', Survey 
%         Review, Vol. 23, No. 176, pp.88-93, April 1975. 
% 
% Variables: 
%  a            - semi-major axis of ellipsoid 
%  A            - Vincenty's constant for computation of sigma 
%  alpha1       - azimuth P1-P2 (radians) 
%  az12         - azimuth P1-P2 (degrees) 
%  az21         - azimuth P2-P1 (degrees) 
%  b            - semi-minor axis of ellipsoid 
%  A            - Vincenty's constant for computation of sigma 
%  cos_alpha1   - cosine of azimuth of geodesic P1-P2 at P1 
%  dlambda      - longitude difference P1 to P2 (radians) 
%  domega       - longitude difference P1' to P2' (radians) 
%  d2r          - degree to radian conversion factor 
%  e2           - eccentricity of ellipsoid squared 
%  ep2          - 2nd eccentricity squared 
%  f            - flattening of ellipsoid 
%  flat         - denominator of flattening, f = 1/flat 
%  lambda1      - longitude of P1 (radians) 
%  lambda2      - longitude of P2 (radians) 
%  lat1         - latitude of P1 (degrees) 
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%  lat2         - latitude of P2 (degrees) 
%  lon1         - longitude of P1 (degrees) 
%  lon2         - longitude of P2 (degrees) 
%  phi1         - latitude of P1 (radians) 
%  phi2         - latitude of P2 (radians) 
%  pion2        - pi/2 
%  psi0         - parametric latitude of P0 (radians) 
%  psi1         - parametric latitude of P1 (radians) 
%  psi2         - parametric latitude of P2 (radians) 
%  s            - geodesic distance P1 to P2 
%  sigma1       - angular distance (radians) on auxiliary sphere from  
%                 equator to P1' 
%  sin_alpha1   - sine of azimuth of geodesic P1-P2 at P1 
%  twopi        - 2*pi 
%  u2           - geodesic constant u-squared 
% 
% 
%============================================================================ 
  
% Define some constants 
d2r   = 180/pi; 
twopi = 2*pi; 
pion2 = pi/2; 
  
% Set defining ellipsoid parameters 
a    = 6378137;           % GRS80 
flat = 298.257222101; 
% a    = 6377397.155;        % Bessel (see Ref [2], p.91) 
% flat = 299.1528128; 
  
% Compute derived ellipsoid constants 
f   = 1/flat; 
b   = a*(1-f); 
e2  = f*(2-f); 
ep2 = e2/(1-e2); 
  
%--------------------------------------- 
% latitude and longitude of P1 (degrees) 
%--------------------------------------- 
 lat1 =  -45;            
 lon1 =  132; 
  
% lat and lon of P1 (radians) 
phi1    = lat1/d2r; 
lambda1 = lon1/d2r; 
  
%------------------------------------ 
% azimuth of geodesic P1-P2 (degrees) 
%------------------------------------ 
az12 = 1 + 43/60 + 25.876544/3600;  
% 
% azimuth of geodesic P1-P2 (radians) 
alpha1 = az12/d2r; 
  
% sine and cosine of azimuth P1-P2 
sin_alpha1 = sin(alpha1); 
cos_alpha1 = cos(alpha1); 
  
%------------------ 
% geodesic distance 
%------------------ 
s = 3880275.684153; 
  
% [1] Compute parametric latitude psi1 of P1 
psi1 = atan((1-f)*tan(phi1)); 
  
% [2] Compute parametric latitude of vertex 
psi0 = acos(cos(psi1)*sin_alpha1); 
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% [3] Compute geodesic constant u2 (u-squared) 
u2 = ep2*(sin(psi0)^2); 
  
% [4] Compute angular distance sigma1 on the auxiliary sphere from equator 
%     to P1' 
sigma1 = atan2(tan(psi1),cos_alpha1); 
  
% [5] Compute the sine of the azimuth of the geodesic at the equator 
sin_alphaE = cos(psi0); 
  
% [6] Compute Vincenty's constants A and B 
A = 1 + u2/16384*(4096 + u2*(-768 + u2*(320-175*u2))); 
B = u2/1024*(256 + u2*(-128 + u2*(74-47*u2))); 
  
% [7] Compute sigma by iteration 
sigma = s/(b*A); 
iter = 1; 
while 1 
    two_sigma_m = 2*sigma1 + sigma; 
    s1 = sin(sigma); 
    s2 = s1*s1; 
    c1 = cos(sigma); 
    c1_2m = cos(two_sigma_m); 
    c2_2m = c1_2m*c1_2m; 
    t1 = 2*c2_2m-1; 
    t2 = -3+4*s2; 
    t3 = -3+4*c2_2m; 
    delta_sigma = B*s1*(c1_2m+B/4*(c1*t1-B/6*c1_2m*t2*t3)); 
    sigma_new = s/(b*A)+delta_sigma; 
    if abs(sigma_new-sigma)<1e-12 
        break; 
    end; 
    sigma = sigma_new; 
    iter = iter + 1; 
end; 
s1 = sin(sigma); 
c1 = cos(sigma); 
  
% [8] Compute latitude of P2 
y = sin(psi1)*c1+cos(psi1)*s1*cos_alpha1; 
x = (1-f)*sqrt(sin_alphaE^2+(sin(psi1)*s1-cos(psi1)*c1*cos_alpha1)^2); 
phi2 = atan2(y,x); 
lat2 = phi2*d2r; 
  
% [9] Compute longitude difference domega on the auxiliary sphere 
y = s1*sin_alpha1; 
x = cos(psi1)*c1-sin(psi1)*s1*cos_alpha1; 
domega = atan2(y,x); 
  
% [10] Compute Vincenty's constant C 
x = 1-sin_alphaE^2; 
C = f/16*x*(4+f*(4-3*x)); 
  
% [11] Compute longitude difference on ellipsoid 
two_sigma_m = 2*sigma1 + sigma; 
c1_2m = cos(two_sigma_m); 
c2_2m = c1_2m*c1_2m; 
dlambda = domega-(1-C)*f*sin_alphaE*(sigma+C*s1*(c1_2m+C*c1*(-1+2*c2_2m))); 
dlon = dlambda*d2r; 
lon2 = lon1+dlon; 
  
% [12] Compute azimuth alpha2 
y = sin_alphaE; 
x = cos(psi1)*c1*cos_alpha1-sin(psi1)*s1; 
alpha2 = atan2(y,x); 
  
% [13] Compute reverse azimuth az21 
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az21 = alpha2*d2r + 180; 
if az21 > 360 
    az21 = az21-360; 
end; 
  
  
  
%------------------------------------------------- 
% Print computed quantities, latitudes and azimuth 
%------------------------------------------------- 
  
  
fprintf('\n/////////////////////////////////////////////////'); 
fprintf('\n// DIRECT CASE on ellipsoid: Vincenty''s method //'); 
fprintf('\n/////////////////////////////////////////////////'); 
fprintf('\n\nellipsoid parameters'); 
fprintf('\na    = %18.9f',a); 
fprintf('\nf    = 1/%16.12f',flat); 
fprintf('\nb    = %21.12f',b); 
fprintf('\ne2   = %20.12e',e2); 
fprintf('\nep2  = %20.12e',ep2); 
  
fprintf('\n\nLatitude & Longitude of P1'); 
[D,M,S] = DMS(lat1); 
if D==0 && lat1<0 
    fprintf('\nlatP1 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nlatP1 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(lon1); 
if D==0 && lon1<0 
    fprintf('\nlonP1 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nlonP1 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
fprintf('\n\nAzimuth & Distance P1-P2'); 
[D,M,S] = DMS(az12); 
fprintf('\naz12 = %4d %2d %9.6f (D M S)',D,M,S); 
fprintf('\ns    = %17.6f',s); 
  
fprintf('\n\nParametric Latitude of P1'); 
[D,M,S] = DMS(psi1*d2r); 
if D==0 && psi1<0 
    fprintf('\npsiP1 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\npsiP1 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nParametric Latitude of vertex P0'); 
[D,M,S] = DMS(psi0*d2r); 
if D==0 && psi0<0 
    fprintf('\npsiP0 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\npsiP0 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nGeodesic constant u2 (u-squared)'); 
fprintf('\nu2 = %20.12e',u2); 
  
fprintf('\n\nangular distance on auxiliary sphere from equator to P1'''); 
fprintf('\nsigma1 = %20.12e radians',sigma1); 
  
fprintf('\n\nVincenty''s constants A and B'); 
fprintf('\nA = %20.12e',A); 
fprintf('\nB = %20.12e',B); 
  
fprintf('\n\nangular distance sigma on auxiliary sphere from P1'' to P2'''); 
fprintf('\nsigma = %20.12e radians',sigma); 
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fprintf('\niterations = %2d',iter); 
  
fprintf('\n\nLatitude of P2'); 
[D,M,S] = DMS(lat2); 
if D==0 && lat2<0 
    fprintf('\nlatP2 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nlatP2 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nVincenty''s constant C'); 
fprintf('\nC = %20.12e',C); 
  
fprintf('\n\nLongitude difference P1-P2'); 
[D,M,S] = DMS(dlon); 
if D==0 && dlon<0 
    fprintf('\ndlon =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\ndlon = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nLongitude of P2'); 
[D,M,S] = DMS(lon2); 
if D==0 && lon2<0 
    fprintf('\nlon2 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nlon2 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nReverse azimuth'); 
[D,M,S] = DMS(az21); 
fprintf('\nalpha21 = %3d %2d %9.6f (D M S)',D,M,S); 
  
fprintf('\n\n'); 
 
 
 

MATLAB function Vincenty_Inverse.m 
 
function Vincenty_Inverse 
%  Vincenty_Inverse computes the "inverse case" on the ellipsoid using 
%  Vinventy's method. 
%  Given the size and shape of the ellipsoid and the latitudes and  
%  longitudes of P1 and P2 this function computes the geodesic distance 
%  P1 to P2 and the forward and reverse azimuths 
  
%============================================================================ 
% Function:  Vincenty_Inverse 
% 
% Useage:    Vincenty_Inverse; 
% 
% Author: 
%  Rod Deakin,  
%  Department of Mathematical and Geospatial Sciences,  
%  RMIT University, 
%  GPO Box 2476V, MELBOURNE VIC 3001 
%  AUSTRALIA 
%  email: rod.deakin@rmit.edu.au 
% 
% Date: 
%  Version 1.0   7 March 2008 
% 
% Functions Required: 
%      [D,M,S] = DMS(DecDeg) 
% 
% Remarks:   
%  This function computes the INVERSE CASE on the ellipsoid.  Given the size 
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%  and shape of an ellipsoid (defined by parameters a and f, semi-major 
%  axis and flattening respectively) and the latitudes and longitudes of P1 
%  this function computes the forward azimuth (az12) P1 to P2, the reverse 
%  azimuth (az21) P2 to P1 and the geodesic distance (s) P1 to P2. 
% 
% References: 
%  [1] Deakin, R.E, and Hunter, M.N., 2007. 'Geodesics on an Ellipsoid - 
%         Bessels' Method', School of Mathematical and Geospatial Sciences, 
%         RMIT University, January 2007. 
%  [2] Vincenty, T., 1975. 'Direct and Inverse solutions of geodesics on  
%         the ellipsoid with application of nested equations', Survey 
%         Review, Vol. 23, No. 176, pp.88-93, April 1975. 
% 
% Variables: 
%  A            - Vincenty's constant for computation of sigma 
%  a            - semi-major axis of ellipsoid 
%  alpha1       - azimuth at P1 for the line P1-P2 (radians) 
%  alpha2       - azimuth at P2 for the line P1-P2 extended (radians) 
%  az12         - azimuth P1-P2 (degrees) 
%  az21         - azimuth P2-P1 (degrees) 
%  B            - Vincenty's constant for computation of sigma 
%  b            - semi-minor axis of ellipsoid 
%  C            - Vincenty's constant for computation of longitude 
%                 difference 
%  cdo          - cos(domega) 
%  cos_sigma    - cos(sigma) 
%  delta_sigma  - small change in sigma 
%  dlambda      - longitude difference P1 to P2 (radians) 
%  domega       - longitude difference P1' to P2' (radians) 
%  d2r          - degree to radian conversion factor 
%  e2           - eccentricity of ellipsoid squared 
%  ep2          - 2nd eccentricity squared 
%  f            - flattening of ellipsoid 
%  flat         - denominator of flattening, f = 1/flat 
%  lambda1      - longitude of P1 (radians) 
%  lambda2      - longitude of P2 (radians) 
%  lat1         - latitude of P1 (degrees) 
%  lat2         - latitude of P2 (degrees) 
%  lon1         - longitude of P1 (degrees) 
%  lon2         - longitude of P2 (degrees) 
%  phi1         - latitude of P1 (radians) 
%  phi2         - latitude of P2 (radians) 
%  pion2        - pi/2 
%  psi0         - parametric latitude of P0 (radians) 
%  psi1         - parametric latitude of P1 (radians) 
%  psi2         - parametric latitude of P2 (radians) 
%  s            - geodesic distance P1 to P2 
%  sdo          - sin(domega) 
%  sigma        - angular distance (radians) on auxiliary sphere from P1'  
%                 to P2' 
%  sin_alphaE   - sine of azimuth of geodesic P1-P2 at equator 
%  sin_sigma    - sin(sigma) 
%  twopi        - 2*pi 
%  u2           - geodesic constant u-squared 
% 
% 
%============================================================================ 
  
% Define some constants 
d2r   = 180/pi; 
twopi = 2*pi; 
pion2 = pi/2; 
  
% Set defining ellipsoid parameters 
 a    = 6378137;           % GRS80 
 flat = 298.257222101; 
% a    = 6377397.155;        % Bessel (see Ref [2], p.91) 
% flat = 299.1528128; 
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% Compute derived ellipsoid constants 
f   = 1/flat; 
b   = a*(1-f); 
e2  = f*(2-f); 
ep2 = e2/(1-e2); 
  
%--------------------------------------- 
% latitude and longitude of P1 (degrees) 
%--------------------------------------- 
lat1 =  -10;            
lon1 =  110; 
  
% lat and lon of P1 (radians) 
phi1    = lat1/d2r; 
lambda1 = lon1/d2r; 
  
%--------------------------------------- 
% latitude and longitude of P2 (degrees) 
%--------------------------------------- 
lat2 =  -45;            
lon2 =  155; 
  
% lat and lon of P2 (radians) 
phi2    = lat2/d2r; 
lambda2 = lon2/d2r; 
  
% [1] Compute parametric latitudes psi1 and psi2 of P1 and P2 
psi1 = atan((1-f)*tan(phi1)); 
psi2 = atan((1-f)*tan(phi2)); 
  
s1 = sin(psi1); 
s2 = sin(psi2); 
c1 = cos(psi1); 
c2 = cos(psi2); 
  
% [2] Compute longitude difference dlambda on the ellipsoid 
dlambda = lambda2-lambda1; % (radians) 
dlon = lon2-lon1;          % (degrees) 
  
% [3] Compute longitude difference domega on the auxiliary sphere by 
%     iteration 
domega = dlambda; 
iter = 1; 
while 1 
    sdo = sin(domega); 
    cdo = cos(domega); 
    x = c2*sdo; 
    y = c1*s2 - s1*c2*cdo; 
    sin_sigma = sqrt(x*x + y*y); 
    cos_sigma = s1*s2 + c1*c2*cdo; 
    sigma = atan2(sin_sigma,cos_sigma); 
    sin_alphaE = c1*c2*sdo/sin_sigma; 
    % Compute c1_2m = cos(2*sigma_m) 
    x = 1-(sin_alphaE*sin_alphaE); 
    c1_2m = cos_sigma - (2*s1*s2/x); 
    % Compute Vincenty's constant C 
    C = f/16*x*(4+f*(4-3*x)); 
    % Compute domega     
    c2_2m = c1_2m*c1_2m; 
    domega_new = dlambda+(1-C)*f*sin_alphaE*(sigma+C*sin_sigma*(c1_2m+C*cos_sigma*(-
1+2*c2_2m))); 
    if abs(domega-domega_new)<1e-12 
        break; 
    end; 
    domega = domega_new; 
    iter = iter + 1; 
end;     
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% [4] Compute parametric latitude of vertex 
psi0 = acos(sin_alphaE); 
  
% [5] Compute geodesic constant u2 (u-squared) 
u2 = ep2*(sin(psi0)^2); 
  
% [6] Compute Vincenty's constants A and B 
A = 1 + u2/16384*(4096 + u2*(-768 + u2*(320-175*u2))); 
B = u2/1024*(256 + u2*(-128 + u2*(74-47*u2))); 
  
% [7] Compute geodesic distance s 
t1 = 2*c2_2m-1; 
t2 = -3+4*sin_sigma*sin_sigma; 
t3 = -3+4*c2_2m; 
delta_sigma = B*sin_sigma*(c1_2m+B/4*(cos_sigma*t1-B/6*c1_2m*t2*t3)); 
s = b*A*(sigma-delta_sigma); 
  
% [8] Compute forward azimuth alpha1 
y = c2*sdo; 
x = c1*s2 - s1*c2*cdo; 
alpha1 = atan2(y,x); 
if alpha1<0 
    alpha1 = alpha1+twopi; 
end; 
az12 = alpha1*d2r; 
  
% [9] Compute azimuth alpha2 
y = c1*sdo; 
x = -s1*c2 + c1*s2*cdo; 
alpha2 = atan2(y,x); 
  
% [10] Compute reverse azimuth az21 
az21 = alpha2*d2r + 180; 
if az21 > 360 
    az21 = az21-360; 
end; 
  
%------------------------------------------------- 
% Print computed quantities, latitudes and azimuth 
%------------------------------------------------- 
  
fprintf('\n////////////////////////////////////////////////////'); 
fprintf('\n// INVERSE CASE on ellipsoid: Vincenty''s method //'); 
fprintf('\n////////////////////////////////////////////////////'); 
fprintf('\n\nellipsoid parameters'); 
fprintf('\na    = %18.9f',a); 
fprintf('\nf    = 1/%16.12f',flat); 
fprintf('\nb    = %21.12f',b); 
fprintf('\ne2   = %20.12e',e2); 
fprintf('\nep2  = %20.12e',ep2); 
  
fprintf('\n\nLatitude & Longitude of P1'); 
[D,M,S] = DMS(lat1); 
if D==0 && lat1<0 
    fprintf('\nlatP1 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nlatP1 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(lon1); 
if D==0 && lon1<0 
    fprintf('\nlonP1 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nlonP1 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
fprintf('\n\nLatitude & Longitude of P2'); 
[D,M,S] = DMS(lat2); 
if D==0 && lat2<0 
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    fprintf('\nlatP2 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nlatP2 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(lon2); 
if D==0 && lon2<0 
    fprintf('\nlonP2 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nlonP2 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nParametric Latitudes of P1 and P2'); 
[D,M,S] = DMS(psi1*d2r); 
if D==0 && psi1<0 
    fprintf('\npsiP1 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\npsiP1 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(psi2*d2r); 
if D==0 && psi2<0 
    fprintf('\npsiP2 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\npsiP2 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nLongitude difference on ellipsoid P1-P2'); 
[D,M,S] = DMS(dlon); 
if D==0 && dlon<0 
    fprintf('\ndlon =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\ndlon = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nLongitude difference on auxiliary sphere P1''-P2'''); 
fprintf('\ndomega = %20.12e radians',sigma); 
fprintf('\niterations = %2d',iter); 
  
fprintf('\n\nParametric Latitude of vertex P0'); 
[D,M,S] = DMS(psi0*d2r); 
if D==0 && psi0<0 
    fprintf('\npsiP0 =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\npsiP0 = %3d %2d %9.6f (D M S)',D,M,S); 
end; 
  
fprintf('\n\nGeodesic constant u2 (u-squared)'); 
fprintf('\nu2 = %20.12e',u2); 
  
fprintf('\n\nVincenty''s constants A and B'); 
fprintf('\nA = %20.12e',A); 
fprintf('\nB = %20.12e',B); 
  
fprintf('\n\nAzimuth & Distance P1-P2'); 
[D,M,S] = DMS(az12); 
fprintf('\naz12 = %4d %2d %9.6f (D M S)',D,M,S); 
fprintf('\ns    = %17.6f',s); 
  
fprintf('\n\nReverse azimuth'); 
[D,M,S] = DMS(az21); 
fprintf('\nalpha21 = %3d %2d %9.6f (D M S)',D,M,S); 
  
fprintf('\n\n'); 
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MATLAB function DMS.m 
 
function [D,M,S] = DMS(DecDeg) 
% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees and returns 
%   Degrees, Minutes and Seconds 
  
val = abs(DecDeg); 
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
  
if abs(S-60) < 5.0e-10 
    M = M + 1; 
    S = 0.0; 
end 
if M == 60 
    D = D + 1; 
    M = 0.0; 
end 
if D >=360 
   D = D - 360;  
end     
  
if(DecDeg<=0) 
    D = -D; 
end 
return 
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ABSTRACT 
 The direct and inverse problems of the geodesic on an ellipsoid are fundamental 
geodetic operations.  This paper presents a detailed derivation of a set of recurrence 
relationships that can be used to obtain solutions to the direct and inverse problems with 
sub-millimetre accuracies for any length of line anywhere on an ellipsoid.  These 
recurrence relationships were first described by Pittman (1986), but since then, little or 
nothing about them has appeared in the geodetic literature.  This is unusual for such an 
elegant technique and it is hoped that this paper can redress this situation.  Pittman's 
method has much to recommend it. 

BIOGRAPHIES OF PRESENTERS 
Rod Deakin and Max Hunter are lecturers in the School of Mathematical and Geospatial 
Sciences, RMIT University; Rod is a surveyor and Max is a mathematician, and both 
have extensive experience teaching undergraduate students. 

INTRODUCTION 
 Twenty-one years ago (March 1986), Michael E. Pittman, an assistant professor 
of mathematical physics with the Department of Physics, University of New Orleans, 
Louisiana USA, published a paper titled 'Precision Direct and Inverse Solutions of the 
Geodesic' in Surveying and Mapping (the journal of the American Congress on 
Surveying & Mapping, now called Surveying and Land Information Systems).  It was 
probably an unusual event – a physicist writing a technical article on geodetic 
computation – but even more unusual was Pittman's method; or as he put it in his paper, 
"The following method is rather different."  And it certainly is. 
 Usual approaches could be roughly divided into two groups: (i) numerical 
integration schemes and (ii) series expansion of elliptic integrals.  The first group could 
be further divided into integration schemes based on simple differential relationships of 
the ellipsoid (e.g., Kivioja 1971, Jank & Kivioja 1980, Thomas & Featherstone 2005), 
or numerical integration of elliptic integrals that are usually functions of elements of the 
ellipsoid and an auxiliary sphere (e.g., Saito 1970, 1979 and Sjöberg 2006).  The second 
group includes the original method of F. W. Bessel (1826) that used an auxiliary sphere 
and various modifications to his method (e.g., Rainsford 1955, Vincenty 1975, 1976 and 
Bowring 1983, 1984). 
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 Pittman developed simple recurrence relationships for the evaluation of elliptic 
integrals that yield distance and longitude difference between a point on a geodesic and 
the geodesic vertex.  These equations can then be used to solve the direct and inverse 
problems.  Pittman's technique is not limited by distance, does not involve any auxiliary 
surfaces, does not use arbitrarily truncated series and its accuracy is limited only by 
capacity of the computer used. 
 Pittman's paper was eight pages long and five of those contained a FORTRAN 
computer program.  In the remaining three pages he presented a very concise 
development of two recurrence relationships and how they can be used to solve the 
direct and inverse problems of the geodesic on an ellipsoid (more about this later).  His 
paper, a masterpiece of brevity, contained a single reference and an acknowledgement 
to Clifford J. Mugnier – then a lecturer in the Department of Civil Engineering, 
University of New Orleans – for numerous discussions.  Unlike other published 
methods which have been discussed and developed in detail over the years, Pittman's 
method seems to have received no further treatment to our knowledge in the academic 
literature, excepting brief mentions in bibliographies and reference lists.  Our purpose, 
in this paper, is to explain Pittman's elegant method as well as provide some useful 
information about the properties of the geodesic on an ellipsoid. 

The Direct and Inverse problems of the geodesic on an ellipsoid 
 In geodesy, the geodesic is a unique curve on the surface of an ellipsoid defining 
the shortest distance between two points.  A geodesic will cut meridians of an ellipsoid 
at angles α , known as azimuths and measured clockwise from north 0º to .  Figure 
1 shows a geodesic curve C between two points A 

360D

( ),A Aφ λ  and B ( ,B B )φ λ  on an 
ellipsoid.  ,φ λ  are geodetic latitude and longitude respectively and an ellipsoid is taken 
to mean a surface of revolution created by rotating an ellipse about its minor axis, NS. 
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Fig. 1: Geodesic curve on an ellipsoid  
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 The geodesic curve C of length s from A to B has a forward azimuth ABα  
measured at A and a reverse azimuth BAα  measured at B and AB BAα α≠ .  The direct 
problem on an ellipsoid is: given latitude and longitude of A and azimuth ABα  and 
geodesic distance s, compute the latitude and longitude of B and the reverse azimuth 

BAα .  The inverse problem is: given the latitudes and longitudes of A and B, compute 
the forward and reverse azimuths ABα , BAα  and the geodesic distance s. 
 The geodesic is one of several curves of interest in geodesy.  Other curves are: (i) 
normal section curves that are plane curves containing the normal at one of the terminal 
points; in Figure 1 there would be two normal section curves joining A and B and both 
would be of different lengths and also, both longer than the geodesic; (ii) curve of 
alignment that is the locus of all points  where the normal section plane through  
contains the terminal points of the line; and (iii) great elliptic arcs that are plane curves 
containing the terminal points of the line and the centre of the ellipsoid.  Normal section 
curves, curves of alignment and great elliptic arcs are all longer than the geodesic and 
Bowring (1972) gives equations for the differences in length between these curves and 
the geodesic. 

kP kP

Some ellipsoid relationships 
 The size and shape of an ellipsoid is defined by one of three pairs of parameters: 
(i)  where a and b are the semi-major and semi-minor axes lengths of an ellipsoid 
respectively, or (ii)  where f is the flattening of an ellipsoid, or (iii)  where  
is the square of the first eccentricity of an ellipsoid.  The ellipsoid parameters  
are related by the following equations 

,a b
,a f 2,a e 2e

2, , ,a b f e

 ( ) (
2 2 2

2
2 21 ; 1 ; 1 2a b b a b b )f b a f e f f

a a a a
− −

= = − = − = = − = −  (1) 

The second eccentricity e  of an ellipsoid is also of use and ′

 ( ) ( )
( )

2 2 2
2

22 2

2
1 1

f fa b ee
b e f

−−′ = = =
− −

 (2) 

 In Figure 1, the normals to the surface at A and B intersect the rotational axis of 
the ellipsoid (NS line) at  and  making angles AH BH ,A Bφ φ  with the equatorial plane of 
the ellipsoid.  These are the latitudes of A and B respectively.  The longitudes ,A Bλ λ  are 
the angles between the Greenwich meridian plane and the meridian planes  and 

 containing the normals through A and B.  
AONAH

BONBH φ  and λ  are curvilinear coordinates 
and meridians of longitude (curves of constant λ ) and parallels of latitude (curves of 
constant φ ) are parametric curves on the ellipsoidal surface.  Planes containing the 
normal to the ellipsoid intersect the surface creating elliptical sections known as normal 
sections.  Amongst the infinite number of possible normal sections at a point, each 
having a certain radius of curvature, two are of interest: (i) the meridian section, 
containing the axis of revolution of the ellipsoid and having the least radius of 
curvature, denoted by ρ  (rho), and (ii) the prime vertical section, perpendicular to the 
meridian plane and having the greatest radius of curvature, denoted by ν  (nu). 
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( )

( ) ( )
3

22

2

2 22 2

1
    and    

1 sin1 sin

a e a

ee
ρ ν 1

φφ

−
= =

−−
 (3) 

 
 In the development that follows, use 
will be made of relationships that can be 
obtained from the differential rectangle on 
the ellipsoid shown in Figure 2.  Here P 
and Q are two points on the surface 
connected by a curve of length ds with 
azimuth α  at P.  The meridians λ  and 

dλ λ+ , and parallels φ  and dφ φ+  form 
a differential rectangle on the surface of 
the ellipsoid. 

P

Q

•

•

λ
λ+ λd

φ+ φd
α

dsρ 
dφ

ν cos  φ dλ φ

α+ αd

Fig. 2: Differential rectangle on ellipsoid From Figure 2 the following 
relationships can be obtained 

 sin cos    and   cosds d ds dα ν φ λ α ρ= φ=

k

 (4) 

Mathematical definition of a geodesic 
 A curve drawn on a surface so that its osculating plane at any point on the surface 
contains the normal to the surface is a geodesic (Lauf 1983).  This definition, including 
a definition of the osculating plane, can be explained briefly by the following. 
 A point P on a curve (on a surface) has a position vector 

 where i,j,k are unit vectors in the directions of the x,y,z 
Cartesian coordinate axes and t is some scalar parameter.  As t varies then the vector r 
sweeps out the curve C on the surface, hence the distance s along the curve is a function 

of t, given via 

( ) ( ) ( ) ( )t x t y t z t= + +r i j

( )ds d t
dt dt

= r .  Differentiating the vector r with respect to s gives a unit 

tangent vector t and differentiating t with respect to s gives the curvature vector , 
perpendicular to t.  n is the principal normal vector, 

κn
κ  (kappa) is the curvature and 

1ρ
κ

=  is the radius of curvature and also the radius of the osculating (kissing) circle 

touching P. 
 The osculating plane at P contains both t and n (and the osculating circle), and 
when this plane also contains the normal to the surface then the curvature  is least and κ
ρ  is a maximum; this is Meunier's theorem (Lauf 1983), a fundamental theorem of 
surfaces.  Therefore, if P and Q are very close and both lie on the surface and in the 
osculating plane, then the distance ds between them is the shortest possible distance on 
the suface. 
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The characteristic equation of a geodesic 
 The mathematical definition of a geodesic does little to help us develop solutions 
to the problem of computing distances of geodesics on an ellipsoid.  It does lead to the 
characteristic equation of a geodesic, and this equation is the basis of all solutions to 
computing geodesic distances.  This equation 

 cos sin constantν φ α =  (5) 

is known as Clairaut's equation in honour of the French mathematical physicist Alexis-
Claude Clairaut (1713-1765).  In a paper in 1733 titled Determination géométric de la 
perpendicular à la méridienne tracée par M. Cassini, ... Clairaut made an elegant study 
of the geodesics of surfaces of revolution and stated his theorem embodied in the 
equation above (Struik 1933).  His paper also included the property already pointed out 
by Johann Bernoulli (1667-1748): the osculating plane of the geodesic is normal to the 
surface (DSB 1971) 
 The characteristic equation of a geodesic shows that the geodesic on the ellipsoid 
has the intrinsic property that at any point, the product of the radius cosr ν φ=  of the 
parallel of latitude and the sine of the azimuth, sinα , of the geodesic at that point is a 
constant.  This means that as r decreases in higher latitudes, in both the northern and 
southern hemispheres, sinα  changes until it reaches a maximum or minimum of 1± .  
Such a point is known as a vertex and the latitude φ  will take maximum value 0φ . 
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Fig. 3: Schematic diagram of the oscillation of a geodesic on an ellipsoid 

 

 Thus the geodesic oscillates over the surface of the ellipsoid between two 
parallels of latitude having a maximum in the Northern and Southern Hemispheres and 
crossing the equator at nodes.  As we will demonstrate later, due to the eccentricity of 
the ellipsoid, the geodesic will not repeat after a complete revolution. 
 Figure 3 shows a schematic diagram of the oscillation of a geodesic on an 
ellipsoid.  P is a point on a geodesic that crosses the equator at A, heading in a north-
easterly direction reaching a maximum northerly latitude maxφ  at the vertex  (north), 
then descends in a south-easterly direction crossing the equator at B, reaching a 
maximum southerly latitude 

0P

minφ  at  (south), then ascends in a north-easterly 
direction crossing the equator again at 

0P
A′ .  This is one complete revolution of the 

geodesic, but Aλ ′  does not equal Aλ  due to the eccentricity of the ellipsoid.  Hence we 
say that the geodesic curve does not repeat after a complete revolution. 
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EQUATIONS FOR COMPUTATION ALONG GEODESICS 
 Using Clairaut's equation and simple differential relationships, expressions for 
distances s and longitude differences λ∆  (see Figure 3) between P on a geodesic and 
the vertex  can be obtained.  These expressions are in the form of elliptic integrals, 
which by their nature do not have exact (or closed) solutions. 

0P

 Expanding the integrands into infinite series, integrating term-by-term and then 
truncating to a finite number of terms is the usual technique to obtain working solutions 
for s and λ∆  (e.g., Thomas 1970).  In this section, we show how this method can be 
simplified by using recurrence relationships to generate solutions to the integrals in the 
series.  Our relationships are slightly different from Pittman (1986) and our notation is a 
little different but in all other respects, we have followed his elegant approach. 

Relationships between parametric latitude ψ and geodetic latitude Φ 
 Development of formulae is simplified if parametric latitude ψ  is used rather 
than geodetic latitude φ .  The connections between the two latitudes can be obtained 
from the following relationships. 
 Figure 4 shows a portion of a meridian 
NPE of an ellipsoid having semi-major axis 

 and semi-minor axis OE a= ON b= .  P is a 
point on the ellipsoid and Q is a point on an 
auxiliary circle centred on O of radius a.  P and 
Q have the same perpendicular distance from the 
axis of revolution ON.  The normal to the 
ellipsoid at P cuts the major axis at an angle φ  
(the geodetic latitude) and intersects the 
rotational axis at H and the distance PH ν= .  
The angle QOE ψ=  is the parametric latitude.  
 The Cartesian equation of the ellipse is 

2 2

2 2 1w z
a b

+ =  and the Cartesian equation of the 

auxiliary circle is .  We may re-
arrange both equations so that  is on the left-hand side of the equals sign giving 

2 2w z+ = 2a
2w

2
2 2

2

aw a z
b

= − 2 2 (ellipse) and 2 2w a z= −  (circle).  Now, since the w-coordinates of P 

and Q are the same then 
2

2 2 2
2

2
P Q

aa z a
b

− = − z  which leads to P Q
bz z
a

= . 
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Fig. 4: Meridian section of ellipsoid

 Using this relationship 

 cos     and     sinw OM a z MP bψ ψ= = = =  (6) 

and differentiating equations (6) with respect to ψ  gives sin , cosdw dza b
d d

ψ ψ
ψ ψ

= − =  

and the chain rule gives cotdz dz d b
dw d dw a

ψ ψ
ψ

= = − . 
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Now by definition, dz
dw

 is the gradient of the tangent and from Figure 4 we may write 

( )tan 90 cotdz
dw

φ φ= − − = −D .  Equating the two expressions for dz dw  gives a 

relationship between ψ  and φ  as 

 ( )tan tan 1 tanb f
a

ψ φ= = − φ  (7) 

From equation (6) and Figure 4, cos cosw a ψ ν φ= =  and using equation (3) gives 

 
( )1 22 2

coscos
1 sine

φψ
φ

=
−

 (8) 

Alternatively, using the trigonometric identity 2 2sin cos 1A A+ = , equation (8) can be 
written as 

 
( )1 22 2

sinsin
1 cose

ψφ
ψ

=
−

 (9) 

The latitudes Φ0 and ψ0 of the geodesic vertex 
Denoting the latitude of the vertex as 0φ  (a maximum), Clairaut's equation (5) gives 

 0 0cos constant cos sinν φ ν φ α= =  (10) 
Denoting the parametric latitude of the vertex as 0ψ  and using cos cosa ψ ν= φ  from 
before, equation (10) becomes 0cos cos sina aψ ψ α=  and 0ψ  is defined as 

 0cos cos sinψ ψ α=  (11) 
Squaring both sides of equation (11) and using again the identity  we 
can obtain the azimuth 

2 2sin cos 1A A+ =
α  of a geodesic as 

 
2 2

0cos cos
cos

cos
ψ ψ

α
ψ
−

=  (12) 

From equation (11) we see that if the azimuth α  of a geodesic is known at P having 
parametric latitude ψ , the parametric latitude 0ψ  of the vertex  can be computed.  
Conversely, given 

0P
ψ  and 0ψ  of points P and  the azimuth of the geodesic between 

them may be computed from equation (12). 
0P

In the following sections, two differential equations; one for ds
dψ

 and the other for d
d
λ
ψ

, 

will be developed that will enable solutions for the geodesic distance s and the 
longitude difference λ∆  between P and the vertex . 0P
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Differential equations for distance ds
dψ

 and longitude difference d
d
λ
ψ

  

From equation (9) we may write ( )2 2 2sin 1 cos sine 2ψ ψ= − φ  and differentiating 
implicitly and re-arranging gives 

 
( )
( )

2 2

2 2

1 sin sin cos

1 cos sin cos

ed
d e

φ ψ ψφ
ψ ψ φ φ

−
=

−
 (13) 

Using the chain rule and equation (4) gives an expression for the derivative ds
dψ

 as 

 
( )
( )

2 2

2 2

1 sin sin cos
cos 1 cos sin cos

eds ds d
d d d e

φ ψ ψφ ρ
ψ φ ψ α ψ φ φ

−
= =

−
 (14) 

Using equations (7), (8), (9) and the fact that 
2

2
21 be

a
− = , we may write 

 
( )

( )

1 22 2

1 22 2
0

1 cos
cos

cos cos

eds a
d

ψ
ψ

ψ ψ ψ

−
=

−
 (15) 

Similarly, the chain rule and equations (4) and (15) gives 

 
( )

( )

1 22 2

1 22 2
0

1 cossin cos
cos cos cos

ed d ds a
d ds d

ψλ λ α ψ
ψ ψ ν φ ψ ψ

−
= =

−
 (16) 

Using equation (10) and the relationship cos cosa ψ ν φ= , we may write 

 
( )

( )

1 22 2
0

1 22 2
0

1 coscos
cos cos cos

ed
d

ψψλ
ψ ψ ψ ψ

−
=

−
 (17) 

Equations (15) and (17) are the basic differential equations that will yield solutions for 
distance s and longitude difference λ∆  along the geodesic curve between P and the 
vertex . 0P

Formula for computing geodesic distance s between P and the vertex P0

Equation (15) can be simplified by letting sinu ψ=  and 0 sinu 0ψ= , so that 

cosdu
d

ψ
ψ

=  and , hence 2 2 2
0 0cos cos u uψ ψ− = − 2

 
( )
( )

1 22 2

1 22 2
0

1 coseds dua
d d u u

ψ

ψ ψ

−
=

−
 (18) 
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The chain rule gives 
( )
( )

1 22 2

1 22 2
0

1 cosa eds ds du
d ddu u u

ψ
ψ ψ

−
= =

−
 but using 2 2cos 1 sinψ ψ= −  

and equations (1) and (2) we are able to obtain, after some manipulation 

 
( )
( )

1 22

1 22 2
0

1b uds
du u u

ε+
=

−
 (19) 

where .  The geodesic distance s between P and the vertex  is given by ( )2eε ′= 0P

 
( )
( )

0
1 22

1 22 2
0

1p u

p u

p
s b dp

u p

ε=

=

+
=

−
∫  (20) 

where 0sin sinpψ ψ≤ ≤ .  Equation (20) can be simplified by use of the binomial series 
and the numerator of the integrand is given by 

 ( ) ( )1
2

1 22

0

1
n

n
n

p B pε
∞

=

+ =∑ 2ε  (21) 

where 
1
2
nB  are binomial coefficients computed from the recurrence relationship 

 
1 1
2 2

1
3 2 ,    1  and  1

2n n
nB B n B

n −

−
= ≥

1
2
0 =  (22) 

Equation (20) can now be written as 

( ) ( )
0 0

1 1
2 2

2
2

1 2 1 22 2 2 20 0 00 0

1u u n
n n n n

n n
n n nu u

ps b B p dp b B dp b B I
u p u p

ε ε
∞ ∞ ∞

= = =

= =
− −

∑ ∑ ∑∫ ∫
1
2
n nε=  (23) 

where 
( )

0 2

1 22 2
0

u n

n
u

pI dp
u p

=
−

∫ ,    for   (24) 0n ≥

 The solution of the integral nI  is fundamental to the computation of the distance s 
along the geodesic between P and , and the usual technique is to find solutions for 
each integral 

0P

nI  and expand equation (23) into a finite series; e.g. Thomas (1970, pp. 
33-34).  Pittman's (1986) approach, outlined below, was to developed the integral nI  as 
a recurrence equation having the general form 1 1n n n n 1I a b I− − −= +  where the coefficients 

 and  are functions of 1na − 1nb − 0,  and n ψ ψ  and an initial value of 0I  is a function of 

0 and ψ ψ  only. 

 Now 
( ) ( )

( )
0 0 02 1 22 1 2 1 2 2

01 2 1 22 2 2 2
0 0

u u un
n n

n
u u u

p p dI dp p dp p u p dp
dpu p u p

− −−
= = − = − −

− −
∫ ∫ ∫  

and using integration by parts (e.g., Ayres 1972) the integral nI  becomes 
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( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

0

0

1 2 1 22 1 2 2 2 2 2 2
0 0

2 21 22 1 2 2 2 2
0 0 1 22 2

0

1 22 1 2 2 2
0 0 1

2 1

2 1

2 1

p u
n n

n
p u

u n
n

u

n
n n

I p u p u p n p dp

pu u u n u p dp
u p

u u u n u I I

=
− −

=

−
−

−
−

⎡ ⎤= − − − − −⎢ ⎥⎣ ⎦

= − + − −
−

⎡ ⎤= − + − −⎣ ⎦

∫

∫

 (25) 
and 

 ( ) ( )1 22 1 2 2 2
0 0 1n2 2 1n

nn I u u u n u I−
−= − + − 1, 2,3,n     for  (26) = …

Let 
0

uU
u

=  so that , 0u Uu= ( )2 2 2 2
0 0 1u u u U− = −  giving 

 ( ) ( ) ( )1 22 1 2 2
0 0 02 1 2n

n 11n I Uu u U n u I−
n−= − + − 1, 2,3,n     for  (27) = …

Let 2
0

2 n
n n

n IJ
u

=  so that ( ) 2
0

1 2
0

2 1
n n

n u
J

u−

−
= 1nI −  and the recurrence formula for nI  becomes 

a simpler recurrence formula for  nJ

 
( )

2 1 2
1

2 11
2 1

n
n n

nJ U U J
n

−
−

−
= − +

−
2,3,n     for  (28) = …

with initial condition 

 21
1 2

0

2 1IJ U U
u 0I= = − +  (29) 

0I  has a simple result derived from equation (24) as follows: 

 ( ) [ ]( )
0 1 22

0 0 01 1
u

u

I u p u
−

= −∫ dp  (30) 

and with the transformation 0 0cos ,  sinp u dp d uθ θ θ= = −  and [ ]2 2
01 1 cp u os θ− = −  

 ( )

0

0

0
0

arccos

1 arccos arccos
u
u

uI d
u

θ

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

⎛ ⎞
= − = =⎜ ⎟

⎝ ⎠
∫ U  (31) 

Using these results, the distance s along the geodesic between P and the vertex  is 0P

 

1
2

1 1 1
2 2 2

2
0 0

1

2 2 4 3 6
0 0 1 1 0 2 2 0 3 3

0 1 2 3

1 1
2

2 4 6

n n
n n

n
s b I u B J

n
b b bbI u B J u B J u B J

D D D D

ε

ε ε ε

∞

=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭

= + + + +

= + + + +

∑

"

"  (32) 
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Formula for computing difference in longitude ∆λ between P and P0

Using the binomial series we may write equation (17) as 

 ( )
( )

1
2

2 1
2

0 1 22 20 0

coscos 1
cos cos

n
n n

n
n

d e B
d
λ ψψ
ψ ψ ψ

−∞

=

= −
−

∑  (33) 

and the difference in longitude between P and the vertex  is 0P

 ( )
0

1
22

0
0

cos 1 n n
n n

n

d d
d

ψ

θ ψ

λλ θ ψ
θ

∞

==

∆ = = −∑∫ e B L  (34) 

where the integral  is  nL

 
( )

0 2

1 22 2
0

cos ,    0
cos cos cos

n

nL
ψ

θ ψ

θ θ
θ θ ψ=

=
−

∫ d n ≥  (35) 

Again, let sinu ψ= , 0 sinu 0ψ=  and put sinp θ= .  Then secd dpθ θ= , 
2cos 1 2pθ = − , and with 

 
( ) ( ) ( )

2 22 12
2 2

cos 1cos cos 1
cos cos 1

n n
n np

d d dp
p

θθ θ θ θ
θ θ

−−
= = = −

−
p dp  

and 

 ( ) ( )( ) ( )1 21 2 1 22 2 2 2 2 2
0 0cos cos 1 sin 1 sin u pθ ψ θ ψ− = − − − = −0  

giving 

 
( )
( )

0
12

1 22 2
0

1
,    1

nu

n
u

p
L dp

u p

−
−

=
−

∫ n ≥

1 2mB p

 (36) 

Using the binomial series, the numerator of the integrand can be expanded into a 

polynomial , where the binomial coefficients ( ) ( )
112

0

1 1
nn m n

m
m

p
−− −

=

− = −∑ 1n
mB −  are 

given by 

 1 1
1     for 2,3, 4,n n

m m
n mB B m

m
− −

−

−
= = …  (37) 

with an initial value 1
1 1nB n− = −  and noting that 1

0 1nB − = . 
Using these results, equation (36) becomes 

 ( )
( )

( )
0 21 1

1
1 22 20 00

1
u mn n

m n
n m

m mu

p 11 m n
m mL B dp

u p

− −
−

= =

= − = −
−

∑ ∑∫ B I−  (38) 

where 
( )

0 2

1 22 2
0

u m

m
u

pI dp
u p

=
−

∫ ,    for   (39) 0m ≥

 11



and equation (39) is the same as equation (24) except for a change of index variable. 
 Using this similarity and the expressions above, the longitude difference given by 
equation (34) can be expressed as 

 ( ) ( )1
2

1
2

0 0
1 0

cos 1 1
n

n mn
n m

n m

L e B Bλ ψ
∞ −

−

= =

⎧ ⎫∆ = + − −⎨
⎩ ⎭

∑ ∑ 1n
mI ⎬  (40) 

Equation (40) can expanded as 

 
( )

( ) ( )

1 1
2 2

1
2

2 2
0 0 1 0

2

1
2 1

2 1

cos 1

1 1

n n
n

n

n
n mn n

n m
n m

L e B e B I

e B B I

λ ψ
∞

=

∞ −
−

= =

⎧ ⎡ ⎤
∆ = + − + −⎨ ⎢ ⎥

⎣⎩
⎫

+ − − ⎬
⎭

∑

∑ ∑ m

⎦  (41) 

and then simplified by use of the binomial series, where 

 ( ) ( ) ( ) ( )1 1 1
2 2 2

1 22 2 2 2
1

0 1 2

1 1 1 1 1 1n nn n
n n

n n n

e e B e B e B
∞ ∞ ∞

= = =

− = − = + − = − + −∑ ∑ ∑
1
22n n
ne B  (42) 

The terms in [  of equation (41) are the last two terms on the right-hand side of 
equation (42) and using this equivalence gives 

]"

 

( ) ( ) ( )

( ) ( ) ( )

1
2

1
2

1
2 2 1

0 0 0
2 1

1
2 2 21

0 0 0 02
2 1

cos 1 1 1 1

1
cos 1 1 1

n
n mn n

n m m
n m

mn
n n m

n
n m

L e I e B B I

1n
m mL e I e B u B J

m

λ ψ

ψ

∞ −
−

= =

∞ −
−

= =

⎧ ⎫∆ = + − − + − −⎨ ⎬
⎩ ⎭
⎧ ⎫−⎪ ⎪= + − − + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑

∑ ∑  (43) 

where 0I  is obtained from equation (31) and  are given by equation (28), noting that 

as before 

mJ

2
0

2
m mm

mJ I
u

= . 

A simple expression for  is obtained from equation (35) as follows 0L

 
( ) ( )

0 0 2

0 1 2 1 22 2 2 2 2
0 0

1 sec

cos cos cos sin tan cos 0

L d d
ψ ψ

θ ψ θ ψ

θθ θ
θ θ ψ ψ θ ψ= =

= =
− −

∫ ∫  (44) 

Putting 0cot tanx ψ θ=  then 2
0tan cosd dxθ ψ= θ  and 

 ( )
( )

2
2 2 2 2 2 0

0 0 0 2
0

2 2 2
0 0

2 2
0

cossin tan cos sin 1 tan
sin

sin 1 tan cot

sin 1 x

ψψ θ ψ ψ θ
ψ

ψ θ ψ

ψ

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠

= −

= −

 

so that 

 

0

1
0

0 2
tan0
tan

tan
sin 1x

dxL
xψ

ψ

ψ
ψ

=

=
−

∫  (45) 
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since 
2

2

arcsin
arccos1

xdx
xx π

⎧
= ⎨ −− ⎩

∫ , then using the second result gives 

 

0

1

0 0 02
tan 0
tan

tansec sec arccos
tan1

x

dxL
xψ

ψ

ψψ ψ
ψ

=

⎛ ⎞
= = ⎜

− ⎝ ⎠
∫ ⎟  (46) 

Equation (40) can be simplified further to give the longitude difference λ∆  between P 
and the vertex  as 0P

 { }0 0 1 2 3cos M M M Mλ ψ∆ = + + + +"  (47) 

where ( )
( )1

2

0

2
0

21
2

for 0

1 1 for 

1 for

n

n n
n n

L n

M e I

B e K n

⎧

1

 2

n

=
⎪
⎪= − − =⎨
⎪
⎪ − ≥⎩

 (48) 

and 
( )1

2 1
0

1

1
   for 2,3,4,

mn
m n

n m m
m

K u B J n
m

−
−

=

−
=∑ …=  (49) 

A GEODESIC ON AN ELLIPSOID DOES NOT REPEAT AFTER A SINGLE 
REVOLUTION 
Earlier, it was mentioned that due to the eccentricity of the ellipsoid, the geodesic will 
not repeat after a complete revolution.  Here is a demonstration of that fact. 
When P is at the node A of Figure 3 then 4λ λ∆ = ∆  and using equation (17) we have 

 ( ) ( )
( )

0
1 22 2

4 0 1 22 2
0 0

1 cos
4 4cos

cos cos cos

e
d

ψ

θ

θ
λ ψ

θ θ ψ=

−
∆ =

−
∫ θ

)

 (50) 

Since this integral is difficult to evaluate, we instead determine upper and lower bounds 
for the quantity ( 44 λ∆  by using the bounds of the integration variable θ .  This allows 
certain terms within the integral to be disposed of and a simplified integral evaluated. 
 
For 00 θ ψ≤ ≤ , the bounds on the numerator of the integrand are 

( ) ( ) ( )1 2 1 2 1 22 2 2 2 2
01 1 cos 1 cose e eθ− ≤ − ≤ − ψ  so that on the one hand 

 

( ) ( )
( )

( )
( )

( )

0
1 22 2

0
4 0 1 22 2

0 0

1 22 2
0 0 0 0

1 22 2 1
0 0 2

1 22 2
0

1 cos
4 4cos

cos cos cos

4cos 1 cos

4cos 1 cos sec

2 1 cos

e
d

e L

e

e

ψ

θ

ψ

ψ

0

λ ψ θ
θ θ ψ

ψ ψ

ψ ψ π ψ

π ψ

=

=

−
∆ ≤

−

= −

= −

= −

∫

 (51) 
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while on the other hand 

 

( ) ( )
( )

( )

0
1 22

4 0 1 22 2
0 0

1 22

1
4 4cos

cos cos cos

2 1

e
d

e

ψ

θ

λ ψ θ
θ θ ψ

π

=

−
∆ ≥

−

= −

∫

 (52) 

Combining these inequalities gives the bounds for the quantity ( )44 λ∆  as 

 ( ) ( ) ( )1 2 1 22 2
42 1 4 2 1 cose eπ λ π− ≤ ∆ ≤ − 2

0ψ  (53) 

Therefore, after a single revolution, ( )44 2λ π∆ <  when .  Note that when 00 ψ< <D 90D

0 0ψ = D  the geodesic is an arc of the equator (a circle) and when 0 90ψ = D  the geodesic 
is an arc of the meridian (an ellipse). 
 

NUMERICAL RESULTS FOR DISTANCE AND LONGITUDE EQUATIONS 
Equations (32) and (47) for computing distance s and longitude difference λ∆  between 
P and the vertex  are relatively simple summations of terms.  To test the number of 
terms required for accurate answers, a geodesic was chosen with an azimuth 

 at P having latitude 

0P

43 12 36α ′ ′= D ′ 9 35 24φ ′ ′′= D  on the ellipsoid of the Geodetic 
Reference System 1980 (GRS80) (Moritz 1980), defined by 6378137 metresa =  and 

1 298.257 222101f = . 
 

( )
( )
[ ]0

0 0

Numerical constants for GRS80 ellipsoid and geodesic
1 6356752.314140356 metres

arctan 1 tan 0.166826262923 radians

arccos cos sin 0.829602797993 radians
sin 0.166053515348; sin 0.73

b a f

f

u u

ψ φ

ψ ψ α
ψ ψ

= − =

= − =⎡ ⎤⎣ ⎦
= =

= = = =

0
0 0

0 0
0

7663250899
sin 0.225107479796; arccos 1.343742980976 radians
sin

tan 0.154125311675; sec arccos 2.097333540996 radians
tan

uU I U
u

V L V

ψ
ψ

ψ ψ
ψ

= = = = =

= = = =
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Table 1:  Ellipsoid and geodesic constants and binomial coefficients for 
equations (32) and (47) 

n 2ne  nε  
2
0

nu  
1
2
nB  

1  6.694380022901e-003  6.739496775479e-003 0.544147071727  0.500000000000 
2  4.481472389101e-005  4.542081678669e-005 0.296096035669 -0.125000000000 
3  3.000067923478e-007  3.061134482735e-007 0.161119790759  0.062500000000 
4  2.008359477428e-009  2.063050597570e-009 0.087672862339 -0.039062500000 
5  1.344472156450e-011  1.390392284997e-011 0.047706931312  0.027343750000 
6  9.000407545482e-014  9.370544321391e-014 0.025959586974 -0.020507812500 
7  6.025214847044e-016  6.315275323850e-016 0.014125833235  0.016113281250 
8  4.033507790574e-018  4.256177768135e-018 0.007686530791 -0.013092041016 

 

Table 2:  Recurrence formula values and distance components for equation (32) 

n 
nJ  nD  

1 1.563072838216  8.541841303930e+006 8541841.303930 m 
2 2.355723441968  9.109578467516e+003 9109.5784675 
3 2.945217495733 -6.293571169346e+000 -6.2935712 
4 3.436115617261  9.618619108010e-003 0.0096186 
5 3.865631515581 -1.929070816523e-005 -0.0000193 
6 4.252194740421  4.456897529564e-008 0.0000000 
7 4.606544305836 -1.123696751599e-010 -0.0000000 
8 4.935583185013  3.006580650377e-013 0.0000000 
 sum  8.550944598425e+006 s = 8550944.598425 m 

 

Table 3:  Recurrence formula values and longitude components for equation (47) 

n 
nJ  nM  

0    2.097333540996e+000 
1 1.563072838216  -4.505315819380e-003 
2 2.355723441968   2.382298926901e-006 
3 2.945217495733   1.267831357153e-008 
4 3.436115617261   6.525291638252e-011 
5 3.865631515581   3.431821056093e-013 
6 4.252194740421   1.852429353592e-015 
7 4.606544305836   1.023576994037e-017 
8 4.935583185013   5.769507252421e-020 

 sum   2.092830620219e+000 

( )0cos 1.413013969112 radians

80.959736823113 degrees

80 57 35.052563

sumλ ψ∆ = ≅

=

′ ′′= D

 
Inspection of these numerical values indicates than an upper limit of  in the 
summations is more than sufficient for accuracies of 0.000001 metre in distances and 
0.000001 second of arc for longitude differences.  [Results for s and 

8N =

λ∆  can be 
confirmed using Vincenty's equations (Vincenty 1975) that have been programmed in a 
Microsoft™ Excel workbook that can be downloaded from the website of Geoscience 
Australia at http://www.ga.gov.au/] 
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 It should be noted here that the distance and longitude equations [equations (32) 
and (47)] are not themselves, solutions to the direct or inverse problems.  Instead, they 
are the basic tools, which if used in certain ways, enable the solution to those problems. 
 In a computer program, equations (32) and (47) would be embedded in a function 
that returned s and λ∆  given the ellipsoid parameters ( ),a f , parametric latitudes 

( 0, )ψ ψ  and the upper limit of summations ( )N .  A brief explanation of how such a 
function might be used is given below. 

USING THE DISTANCE AND LONGITUDE EQUATIONS TO COMPUTE THE 
DIRECT AND INVERSE PROBLEM 
 

equator •••

•

•

•

•
•

•

•

node node node

vertex

vertex

P1

P1P2

P2

P0

s1 s4

s2

s3

s

φmax

φmin

φ1
∆λ

∆λ

∆λ

1

2

4

λ1 λ0

A B A'

A

α1 α12

α2

α21
=

 
 

Fig. 5: Schematic diagram of a geodesic between  and  on an ellipsoid 1P 2P
 

Direct solution 
The key here is to use the distance equation in an iterative computation of 2sinψ .  Once 
this is known, then 2 2 2,  and 1φ λ α  follow.  The steps in the computation are: 
 
1. Test the azimuth to determine whether the geodesic is heading towards or away 
from the nearest vertex , noting that  will be in the same hemisphere as . 0P 0P 1P
2. Compute 1ψ  and 0ψ ; then use the distance and longitude equations to compute  

and 
1s

1λ∆  between  and , as well as 1P 0P 0λ . (see Fig. 5). 
3. With sin 0u ψ= = , compute  and 4s 4λ∆  between the node and . 0P
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4. Compute .  If  then  is 

after  and closer to another vertex 

1 0
2

1 0

  if geodesic is heading towards 
  if geodesic is heading away from 

s s P
s

s s P
−⎧

= ⎨ +⎩
2 0s > 2P

0P 0P′  in which case  is reduced by multiples of 
 until  and the number of vertices n determined (vertices are  apart).  

If  then  is before .  (Note that in Fig. 5, 

2s

42s 2s s< 4 42s

2 0s < 2P 0P 2 0s <  and  is before ) 2P 0P
5. Compute 2ψ  by iteration.  An approximate value 2ψ ′  is found from equations (32) 

by taking the first term only;  hence 0
0

sinarccos
sin

s I
b

ψ
ψ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

 and 2
2 0sin sin cos s

b
ψ ψ ⎛ ⎞′ = ⎜ ⎟

⎝ ⎠
. 

 Now a re-arrangement of the differential equation (19) gives 
2 2
0

21
u udsdu

b uε
−

=
+

 

where 2sinu ψ ′= ,  and 2ds s s′= − 2 2s′  is computed from the distance equation with 
the approximate parametric latitude 2ψ ′ .  Equation (19), linking ds and du, is the 
basis of the iterative solution for 2sinψ  (and hence 2φ ). 

6. After computing 2ψ  the longitude difference 2λ∆  is computed and depending on 
the number of vertices and the direction of the geodesic, 2λ  is determined.  The 
azimuth 2α  follows from Clairaut's equation and the reverse azimuth 21α  obtained. 

Inverse solution 
This is the more difficult of the two solutions since 0ψ  is unknown and must be 
determined by iteration, using approximations for 1,  and s 2α α  obtained by 
approximating the ellipsoid with a sphere and using spherical trigonometry.  The steps 
in the computation are: 
 
1. Convert longitudes of  and  to east longitudes in the range  

and determine a longitude difference 
1P 2P 1 20 , 36λ λ< <D D0

λ∆  in the range .  180 180λ− ≤ ∆ ≤D D λ±∆  
corresponding to east/west direction of the geodesic from . 1P

2. Compute parametric latitudes 1ψ  and 2ψ  then use these and λ∆  as latitudes and 
longitude difference on a sphere to compute spherical distance σ  and spherical 
angles 1β  and 2β .  These can be used to determine approximations of s and 12α . 

3. Compute 0ψ  by iteration.  Approximations 1λ′∆  and 2λ′∆  can be obtained from 

equation (47) noting that 0 0
0

tansec arccos
tan

M ψψ
ψ

⎛ ⎞
= ⎜

⎝ ⎠
⎟  and ignoring terms 

 1 2 3, , ,M M M …

 This gives 1
1

0

tanarccos
tan

ψλ
ψ

⎛ ⎞
′∆ = ⎜ ⎟

⎝ ⎠
 and 2

2
0

tanarccos
tan

ψλ
ψ

⎛ ⎞
′∆ = ⎜ ⎟

⎝ ⎠
, and 
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 ( ) 1 2
0 4

0 0

tan tanarccos arccos
tan tan

f ψ ψψ λ λ λ
ψ ψ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪′ ′= ∆ − ∆ = ± ± ± ∆ − ∆⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

λ  where the ±  

signs are associated with the east/west direction of the geodesic. 
 0ψ  can be found using Newton's iterative method (Williams 1972) 

 ( ) ( ) ( )
( )

0
0 01

0
n n

f
f
ψ

ψ ψ
ψ+

= −
′

 (54) 

 where ( 0f )ψ′  is the derivative of ( )0f ψ .  An initial value of 0ψ  can be computed 
from equation (11). 

4. Once 0ψ  is known then 1 1 2, ; ,s s 2λ λ∆ ∆  and 4 ,s 4λ∆  can be computed from the 
distance and longitude equations and s obtained.  The forward and reverse azimuths 
can be found from Clairaut's equation (5). 

CONCLUSION 
 Pittman's (1986) recurrence relationships for evaluating integrals allow beautifully 
compact equations for distance s and longitude difference λ∆  along a geodesic between 
P and the vertex .  These equations can be easily translated into a computer program 
function returning s and 

0P
λ∆  given a, f, u and .  Using such a function, algorithms (as 

outlined above), can be constructed to solve the direct and inverse problems on the 
ellipsoid.  Pittman's (1986) paper (which included FORTRAN computer code) has a 
concise development of the necessary equations and algorithms.  The paper here has a 
more detailed development of the recurrence relationships (with a slightly different 
formulation) as well as additional information on the definition and properties of a 
geodesic. 

0u

 Interestingly, Pittman's (1986) method is entirely different to other approaches 
that fall (roughly) into two groups: (i) numerical integration techniques and (ii) series 
expansion of integrals; the latter of these with a history of development extending back 
to Bessel's (1826) method.  Numerical integration, a technique made practical with the 
arrival of computers in the mid to late 20th century, is relatively modern.  So too is 
Pittman's method. 
 To our knowledge, this is the first paper (since the original) discussing his elegant 
method; a method that has much to recommend it, and one that we hope might become 
the object of study in undergraduate surveying courses and discussion in the geodetic 
literature. 
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ABSTRACT 

These notes provide a detailed derivation of the equation for a normal section curve on an 

ellipsoid and from this equation a technique for computing the arc length along a normal 

section curve is developed.  Solutions for the direct and inverse problems of the normal 

section on an ellipsoid are given and MATLAB functions are provided showing the 

algorithms developed. 

 

INTRODUCTION 

In geodesy, the normal section curve is a plane curve created by intersecting a plane 

containing the normal to the ellipsoid (a normal section plane) with the surface of the 

ellipsoid, and the ellipsoid is a reference surface approximating the true shape of the Earth.  

In general, there are two normal section curves between two points on an ellipsoid, a fact 

that will be explained below, so the normal section curve is not a unique curve.  And the 

distance along a normal section curve is not the shortest distance between two points.  

The shortest distance is along the geodesic, a unique curve on the surface defining the 

shortest distance, but the difference in length between the normal section and a geodesic 

can be shown to be negligible in all practical cases.   

The azimuth of a normal section plane between two points on an ellipsoid can be easily 

determined by coordinate geometry if the latitudes and longitudes of the points are 

expressed in a local Cartesian coordinate system – this will be explained in detail below.   

The distance along a normal section curve can be determined by numerical integration 

once the polar equation of the curve is known.  And the derivation of the polar equation of 



a normal section curve is developed in detail by first proving that normal sections of 

ellipsoids are in fact ellipses, then deriving Cartesian equations of the ellipsoid and the 

normal section in local Cartesian coordinates and finally transforming the local Cartesian 

coordinates to polar coordinates.  The differential equation for arc length (as a function of 

polar coordinates) is derived and a solution using a numerical technique known as 

Romberg integration is developed for the arc length along a normal section curve.   

The azimuth of the normal section as a function of Cartesian coordinates); the polar 

equation of the normal section curve; and the solution of the arc length using Romberg 

integration are the core components of solutions of the direct and inverse cases of the 

normal sections on an ellipsoid.  These are fundamental geodetic operations and can be 

likened to the equivalent operations of plane surveying; radiations (computing coordinates 

of points given bearings and distances radiating from a point of known coordinates) and 

joins; (computing bearings and distances between points having known coordinates).  The 

solution of the direct and inverse cases of the normal section are set out in detail and 

MATLAB functions are provided. 

 

THE ELLIPSOID 
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Figure 1:  The reference ellipsoid 

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse (whose 

major and minor semi-axes lengths are a and b respectively and a ) about its minor 

axis.  The  curvilinear coordinate system is a set of orthogonal parametric curves on 

the surface – parallels of latitude φ  and meridians of longitude λ  with their respective 

reference planes; the equator and the Greenwich meridian.   

b>

,φ λ

 
Normal Section.doc  2 



Longitudes are measured  to  (east positive, west negative) from the Greenwich 

meridian and latitudes are measured  to  (north positive, south negative) from the 

equator.  The x,y,z geocentric Cartesian coordinate system has an origin at O, the centre 

of the ellipsoid, and the z-axis is the minor axis (axis of revolution).  The xOz plane is the 

Greenwich meridian plane (the origin of longitudes) and the xOy plane is the equatorial 

plane.   

0D 180± D

0D 90± D

The positive x-axis passes through the intersection of the Greenwich meridian and the 

equator, the positive y-axis is advanced 90  east along the equator and the positive z-axis 

passes through the north pole of the ellipsoid.   

D

The Cartesian equation of the ellipsoid is 

 
2 2 2

2 2 1
x y z

a b
+

+ =  (1) 

where a and b are the semi-axes of the ellipsoid ( )a b> . 

The first-eccentricity squared  and the flattening f of the ellipsoid are defined by 2e

 
( )

2 2
2

2
2

a b
e f

a
a b

f
a

−
= = −

−
=

f
 (2) 

and the polar radius c, and the second-eccentricity squared  are defined by 2e ′

 ( )
( )

2

2 2 2
2

2 2

1
2

11

a a
c

b f
f fa b e

e
b ef

= =
−

−−′ = = =
−−

2

 (3) 

 

PROOF THAT NORMAL SECTION CURVES ARE ELLIPSES 

Normal section curves are plane curves; i.e., curves on the surface of the ellipsoid created 

by intersecting the surface with a plane; and this plane (the normal section plane) contains 

the normal to the surface at one of the terminal points.   

A meridian of longitude is also a normal section curve and all meridians of longitude on 

the ellipsoid are ellipses having semi-axes a and b ( )a b>  since all meridian planes – e.g., 

Greenwich meridian plane xOz and the meridian plane pOz containing P – contain the z-

axis of the ellipsoid and their curves of intersection are ellipses (planes intersecting surfaces 
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2create curves of intersection on the surface).  This can be seen if we let  in 

equation 

2 2p x y= +

(1) which gives the familiar equation of the (meridian) ellipse 

 (
2 2

2 2 1      
p z

a b
a b

+ = < )  (4) 
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Figure 2:  Meridian ellipse 

In Figure 2,  is the latitude of P (the angle between the equator and the normal), C is 

the centre of curvature and PC is the radius of curvature of the meridian ellipse at P.  H is 

the intersection of the normal at P and the z-axis (axis of revolution). 

φ

The only parallel of latitude that is also a normal section is the equator.  And in this 

unique case, this normal section curve (the equator) is a circle.  All parallels of latitude on 

the ellipsoid are circles created by intersecting the ellipsoid with planes parallel to (or 

coincident with) the xOy equatorial plane.  Replacing z with a constant C in equation (1) 

gives the equation for circular parallels of latitude 

 ( )b
2

2 2 2 2
2

1        0 ;
C

x y a p C b a
b

⎛ ⎞⎟⎜+ = − = ≤ ≤ >⎟⎜ ⎟⎟⎜⎝ ⎠
 (5) 

All other curves on the surface of the ellipsoid created by intersecting the ellipsoid with a 

plane are ellipses.  And this general statement covers all normal section planes that are not 

meridians or the equator.  This can be demonstrated by using another set of coordinates 

 that are obtained by a rotation of the x,y,z coordinates such that , ,x y z′ ′ ′

  
11 12 13

21 22 23

31 32 33

       where   

x x r

y y r r

z rz

⎡ ⎤′ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎢ ⎥ = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

R R
r

r

r

r

r

where R is an orthogonal rotation matrix and  so 1 T− =R R
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11 21 31

1
12 22 32

13 23 33

       and   

x xx x r

y y y r r r

z z rz z

−

⎡ ⎤ ⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥⎤
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎥
⎢ ⎥ ⎢ ⎥ ⎢′ ′⎢ ⎥ ⎢ ⎥= = ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎥
⎢ ⎥ ⎢ ⎥ ⎢′ ′⎢ ⎥ ⎢ ⎥⎥⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

R

⎦

y′ ′

 

giving  

2 2 2 2 2 2 2
11 21 31 11 21 11 31 21 31

2 2 2 2 2 2 2
12 22 32 12 22 12 32 22 32

2 2 2 2 2 2 2
13 23 33 13 23 13 33 23 33

2 2 2
11 12

2 2 2

2 2 2

2 2 2

x r x r y r z r r x y r r x z r r y z

y r x r y r z r r x y r r x z r r y z

z r x r y r z r r x y r r x z r r y z

x y r r

′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + +

′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + +

′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + +

+ = +( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2 2 2 2
21 22 31 32 11 21 12 22

11 31 12 32 21 31 22 32

2

2 2

x r r y r r z r r r r x

r r r r x z r r r r y z

′ ′ ′+ + + + + +

′ ′ ′ ′+ + + +

Substituting into equation (1) gives the equation of the ellipsoid in  coordinates , ,x y z′ ′ ′

 

( ) ( ) ( ) ( )

( ) ( )

{ }

2 2 2 2 2 2 2 2 2
11 12 21 22 31 32 11 21 12 22

2
11 31 12 32 21 31 22 32

2 2 2 2 2 2
13 23 33 13 23 13 33 23 332

21

2 2

1
2 2 2

r r x r r y r r z r r r r x y

a r r r r x z r r r r y z

r x r y r z r r x y r r x z r r y z
b

⎧ ⎫′ ′ ′⎪ ⎪+ + + + + + +⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪′ ′ ′ ′+ + + +⎪ ⎪⎪ ⎪⎩ ⎭

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + + = 1

′ ′

 (6) 

In equation (6) let  where  is a constant.  The result will be the equation of a 

curve created by intersecting an inclined plane with the ellipsoid, i.e., 
1z C′ = 1C

 

{ }
( ){ } ( ){ }
{ }

2 2 2 2 2 2
2 211 12 13 11 21 12 22 13 23 21 22 23

2 2 2 2 2 2

1 11 31 12 32 13 33 1 21 31 22 32 23 33

2 2 2 2
1 31 32 33

2

2 2

1

r r r r r r r r r r r r
x x y

a b a b a b

C r r r r r r x C r r r r r r y

C r r r

⎧ ⎫ ⎧+ + +⎪ ⎪ ⎪⎪ ⎪ ⎪′ ′ ′+ + + + +⎨ ⎬ ⎨⎪ ⎪ ⎪⎪ ⎪ ⎪⎩ ⎭ ⎩
′ ′+ + + + + +

= − + +

y
⎫⎪⎪ ′⎬⎪⎪⎭

1=

 (7) 

This equation can be expressed as 

  (8) 2 22Ax Hx y By Dx Ey′ ′ ′ ′ ′ ′+ + + +

where it can be shown that , hence it is the general Cartesian equation of an 

ellipse that is offset from the coordinate origin and rotated with respect to the coordinate 

axes (Grossman 1981).  Equations of a similar form can be obtained for inclined planes 

 and , hence we may say, in general, inclined planes intersecting the 

ellipsoid will create curves of intersection that are ellipses. 

2 0AB H− >

2x C′ = 3y C′ =

 



NORMAL SECTION CURVES BETWEEN P1 AND P2 ON THE ELLIPSOID 
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Figure 3:  Normal section curves between P1 and P2 on the ellipsoid 

 

Figure 3 shows P1 and P2 on the surface of an ellipsoid.  The normals at P1 and P2 (that lie 

in the meridian planes  and  respectively) cut the rotational axis at  

and , making angles  with the equatorial plane of the ellipsoid.  These are the 

latitudes of  and  respectively.   

1 1
ONPH

1 2
,φ φ

2 2
ONP H

1
H

2
H

1
P

2
P

The plane containing the ellipsoid normal at , and also the point  intersects the 

surface of the ellipsoid along the normal section curve .  The reciprocal normal section 

curve  (the intersection of the plane containing the normal at , and also the point 

 with the ellipsoidal surface) does not in general coincide with the normal section curve 

 although the distances along the two curves are, for all practical purposes, the same.   

1
P

2
P

2
P

1 2
PP

2 1
P P
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Hence there is not a unique normal section curve between  and , unless both  and 

 are on the same meridian or both are on the equator. 
1

P
2

P
1
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2
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The azimuth , is the clockwise angle (  to 360°) measured at  in the local horizon 

 the meridian) to the normal section plane containing   

The azimuth  is the azimuth of the normal section plane sured at  

12
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plane from north (the direction of

21
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LOCAL CARTESIAN COORDINATES 

Figure 4 shows a local Cartesian coordinate system E,N,U with an origin at P on the 

reference ellipsoid with respect to the geocentric Cartesian system x,y,z whose origin is a 

the centre of the ellipsoid 
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Figure 4:  x,y,z geocentric Cartesian and E,N,U local Cartesian coordinates 

 

Geocentric x,y,z Cartesian coordinates are computed from the following equations 

  (9) 

where  in Figure 4 is the radius of curvature in the prime vertical plane and 

 

( )2

cos cos

cos sin

1 sin

x

y

z e

ν φ λ
ν φ λ

ν φ

=
=

= −

PHν =

2 21 sin

a

e
ν

φ
=

−
 (10) 

The origin of the local E,N,U system lies at the point .  The positive U-axis is 

coincident with the normal to the ellipsoid passing through  and in the direction of 

increasing radius of curvature .  The N-U ian plane passing 

through P and the positive N-axis points in the direction of North.  The E-U plane is 

perpendicular to the N-U plane and the positive E-axis points East.  The E-N plane is 

often referred to as the local geodetic horizon plane

( )0 0
,P φ λ

P

 plane lies in the meridν

. 

Geocentric and local Cartesian coordinates are related by the matrix equation 

 

x

y

z

0

0

0

U x

E y

N z
φλ

⎡ ⎤ ⎡ − ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ − ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

R

⎦

 (11) 
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n coordinates of the origin of the E,N,U system 

es. 

where 
0 0 0
, ,x x z  are the geocentric Cartesia

and φλR  is a rotation matrix derived from the product of two separate rotation matric

 
0 00 0

0

1

cos sin 0cos 0 sin λ λφ φ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

0 0

0 0

0 1 0 sin cos

0 0sin 0 cos

φλ φ λ λ λ

φ φ

⎢ ⎥ ⎢ ⎥= −⎢ ⎥= ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

RR R  (12) 

The first,  (a positive right-handed rotation about the x-axis by ) takes the x,y,z axes 

to  is coincident with the z-axis and the  plane is the Earth's 

 plane is the meridian plane passing through P and the 

is perpendicular to the meridian plane and in the direction of East. 

 

 

 

λR

′ .  The 

equatorial plane.  The 

λ

, ,x y z′ ′ -axisz ′ -x y′ ′

-x y′ ′ -axisy ′  

 
sin cos 0y yλ λ

cos sin 0

0 0 1

x x

z z

λ λ

λ

⎡ ⎤ ⎡ ⎤ ⎡′ ⎤
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The second  (a rotation about the y'-axis by ) takes the  axes to the 

N-axis. 
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axes.  The is  is parallel to the U-axis, the -axisy ′′  is parallel to the E-axis and the 
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0

0
⎥
⎥⎦

 (13) 

Rotation matrices formed from rotations about coordinate axes are often called Euler 

orthog tisfyin ).

ual 

 

x

y

z

Performing the matrix multiplication in equation (12) gives 

cos cos cos sin sinφ λ φ λ φ⎡ ⎤
0 0 0 0

0 0

0 0 0 0

sin cos 0

sin cos sin sin cos

φλ λ λ

φ λ φ λ φ

⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢− −⎢⎣

R

rotation matrices in honour of the Swiss mathematician Léonard Euler (1707-1783).  They 

are onal, sa g the condition T =R R I  (i.e., 1− =R R  

A re-ordering of the rows of the matrix φλR  gives the transformation in the more us

form E,N,U 

T

0

0

0

E x

N y

U z

⎡ ⎤ ⎡ − ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ − ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

R

⎦

 (14) 

where 0

0

 (15) 

From equation (14) we can see that coordinate differences , 

and  in the local geodetic horizon plane are given by 

 

 

0 0

0 0 0 0

0 0 0 0

sin cos 0

sin cos sin sin cos

cos cos cos sin sin

λ λ

φ λ φ λ φ

φ λ φ λ φ

⎡ ⎤−⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R

k iE E EΔ = − k iN N NΔ = −  

k iU U UΔ = −

E x

N y

U z

⎡ ⎤ ⎡ ⎤Δ Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢Δ = Δ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢Δ Δ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

R

⎦

 (16) 

where ,  are geocentric Cartesian coordinate 

differences. 

 

NORMAL SECTION AZIMUTH ON THE ELLIPSOID 

The matrix relationship given by equation (16) can be used to derive an expression for the 

azimuth of a normal section between two points on the reference ellipsoid.  The normal 

section plane between points  and  on the Earth's terrestrial surface contains the 

normal at point , the intersection of the normal and the rotational axis of the ellipsoid 

at  (see Figure 3) and .  This plane will intersect the local geodetic horizon plane in a 

ving ich is the direction of the meridian at . 

k i
x x xΔ = −

k i
y y yΔ = −

k i
z z zΔ = − and 

1P 2P

1P

1H

line ha
2P

 an angle with the north axis, wh 1P
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 denoted as  and will have 

components  and  in the local geodetic horizo  plane.  From plane geometry 

This angle is the azimuth of the normal section plane 1 2P P−
12

α

EΔ NΔ n

12
tan

E
N

α
Δ

=
Δ

  (17) 

By inspection of equations (15) and (16) we may write the equation for normal section 

azimuth between points 1P  and 2P  as 

 1
12

in
tan

E λ
α

+Δ
= = 1

1 1

s cos

sin cos sin sin cos

x y

N x y z

λ
φ λ φ λ φ

−Δ Δ

Δ −Δ −Δ +Δ
 (18) 

,  and 

 

The Cartesian equation of the ellipsoid is given by equation (1) as 

 

1 1 1

where 
2 1

x x xΔ = −
2 1

y y yΔ = −
2 1

z z zΔ = −  

EQUATION OF THE ELLIPSOID IN LOCAL CARTESIAN COORDINATES 

2 2 2

2 2
1

x y z
a b
+

+ =  (19) 

and multiplying both sides of equation (19) by  gives 2a

2
2 2 2 2

2

a
x y z a+ + =  0) 

b
(2  

e-arranging equation (3) gives 
2

2

2
1

a
e

b
′= +R  and substituting this result into equation (20) 

and re-arranging gives an alternative expression for the Cartesian equation of an ellipsoid 

s 

  (21) 

a

2 2 2 2 2 2 0x y z e z a′+ + + − =

 

We now find expressions for 2 2 2,  and x y z  in terms of local Cartesian coordinates that 

 (21) and simplified will give the equation of the ellipsoid in 

e set out below. 

when substituted into equation

local Cartesian coordinates.  The relevant substitutions ar

The relationship between geocentric and local Cartesian coordinates is given by equation 

(14) as 

 
0

0

0

x

N y y

U z z

E x⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R  (22) 
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ation 

⎥
⎥

⎥⎦

0

 (24) 

with the radius of curvature of the prime vertical section 

where the orthogonal rotation matrix R is given by equ (15) as 

⎤ ⎡ ⎤−
 

0 0 0
sin sin cosφ λ φ− ⎥

⎥
 (23) 

11 12 13 0 0

21 22 23 0 0

31 32 33 0 0 0 0 0

sin cos 0

sin cos

cos cos cos sin sin

r r r

r r r

r r r

λ λ
φ λ
φ λ φ λ φ

⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= = −⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

R

and 

( )

0 0 0 0

0 0 0 0

2
0 0

cos cos

cos sin

1 sin

x

y

z e

ν φ λ
ν φ λ

ν φ

=
=

= −

 

 
0 2 2

ν =
−

 
0

1 sin

a

e φ
(25) 

Re-arranging equation (22) gives 

 

x

y
0

1

0

x E

y N

z U

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

0

z

⎢ ⎥ ⎢ ⎥ ⎢= + ⎥
⎢ ⎥ ⎢ ⎢ ⎥⎥
⎢ ⎥ ⎢ ⎢ ⎥⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣

R

⎦

 (26) 

here w

 
11 21 31

13 23 33
r r r

1
12 22 32

T

r r r

r r r−

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (27) R R

Expanding equation (26) gives 

 (28) 

 (29) 

11 21 31 0

12 22 32 0

13

x r E r N r U x

y r E r N r U y

z r E r N r U z

= + + +
= + + +
= + + +

 

23 33 0

and 

2 2 2 2 2 2 2
11 21 31 11 21 11 31 21 31

2 2 2x r E r N r U r r EN r r EU r r NU= + + + + +

 

2
0 11 0 21 0 31 0

2 2 2x r Ex r Nx r Ux+ + + +
2 2 2 2 2 2 2

12 22 31 12 22 12 32 22 32
2
0 12 0 22 0 32 0

2 2 2 2 2 2 2
13 23 33 13 23 13

2 2 2

2 2 2

2 2

y r E r N r U r r EN r r EU r r NU

y r Ey r Ny r Uy

z r E r N r U r r EN r

= + + + + +

+ + + +

= + + + +
33 23 33

2
0 13 0 23 0 33 0

2

2 2 2

r EU r r NU

z r Ez r Nz r Uz

+

+ + + +



with 
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) 2

 (30) 

 (23), certain terms in equation 

 can be simplified as 

nd 

 

Substituting these results into equation (30) gives 

  (31) 

Using equation (24) and noting that equation (25) can be re-arranged as 

( ) ( ) (
( )
( )
( )

( )
( )

2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 12 13 21 22 23 31 32 33

11 21 12 22 13 23

11 31 12 32 13 33

21 31 22 32 23 33
2 2 2
0 0 0

11 0 12 0 13 0

21 0 22 0 23 0

31 0 32 0 33

2

2

2

2

2

2

x y z r r r E r r r N r r r U

r r r r r r EN

r r r r r r EU

r r r r r r NU

x y z

r x r y r z E

r x r y r z N

r x r y r

+ + = + + + + + + + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +( )0
z U

Now using the equivalences for 
11 12
, , etcr r  given in equation

(30)

 2 2 2
21 22 23

r r r+ + = ( )
( )

2 2 2 2 2
11 12 13 0 0

2 2 2 2
0 0 0 0

2 2 2 2 2 2 2
31 32 33 0 0 0 0

sin cos 1

sin cos sin cos 1

cos cos sin sin 1

r r r

r r r

λ λ

φ λ λ φ

φ λ λ φ

+ + = + =

+ + =

+ + = + + =

 

a

11 21 12 22 13 23 0 0 0 0 0 0

11 31 12 32 13 33 0 0 0 0 0 0

2
21 31 22 32 23 33 0 0 0 0 0 0 0 0

2
0 0 0

sin sin cos cos sin sin 0

0

sin cos cos cos cos sin 0

0

sin cos cos sin c

sin cos cos si

r r r r r r

r r r r r r

r r r r r r

λ φ λ λ φ λ

λ φ λ λ φ λ

φ φ λ φ

φ φ λ

+ + = − +
=

+ + = − + +
=

+ + = − −

=− +( )2
0 0 0

n cos sinλ φ φ+

 
2os sin cos sinφ λ φ φ+

0=

( )
( )
( )

2 2 2 2 2 2 2
0

11 0 12 0 13 0

21 0 22 0 23 0

31 0 32 0 33 0

2

2

2

x y z E N U x

r x r y r z E

r x r y r z N

r x r y r z U

+ + = + + + +

+ + +

+ + +

+ + +

2 2
0 0

y z+

2
2 2

0 2
0

we have 

1 sin
a

e φ
ν

− =  
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 0
φ

From equations (31), (23) and (24) we have 

 

λ

and  

 

φ

Substituting these results into equation (31) gives 

)
 (32) 

Using the expression for  given in equation (29), the term  in equation (21) can be 

expressed as 

 

2 φ

( ) ( )
( )

( ) ( )
( )( )

2
2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0

2 2 2 2 2 4
0 0 0 0
2 2 2 2 2 2 2 2 4 2
0 0 0 0 0 0 0
2 2 2 2 2 4 2
0 0 0 0 0

2 2 2 2 2 2 2
0 0 0 0

2 2 2 2
0

cos cos sin 1 sin

cos sin 1 2

cos sin 2 sin sin

2 sin sin

1 sin sin 1

1

x y z e

e e

e e

e e

e e e

a a e

ν φ λ λ ν φ

ν φ ν φ

ν φ ν φ ν φ ν

ν ν φ ν φ

ν φ ν φ

ν

+ + = + + −

= + − +

= + − +

= − +

= − − −

= − − −

 

11 0 12 0 13 0 0 0 0 0 0 0 0 0
cos cos sin cos sin cos 0

0

r x r y r z ν φ λ λ ν φ λ λ+ + = − + +
=

  

( )
( )

2 2
23 0 0 0 0 0 0 0 0 0

2
0 0 0

2 2 2
0 0 0 0 0

2
0 0 0

cos sin cos sin cos sin

1 sin cos

cos sin cos sin 1

cos sin

r x r y r z

e

e

e

ν φ φ λ ν φ φ

ν φ φ

ν φ φ λ λ

ν φ φ

+ + = − −

+ −

= − + − +

= −

 

21 0 22 0

( )
( )

( )

2 2 2 2 2 2
31 0 32 0 33 0 0 0 0 0 0 0 0 0

2 2 2
0 0 0 0

2 2 2 2
0 0 0 0 0 0

2 2
0 0
2

cos cos cos sin 1 sin

cos 1 sin

cos sin sin

1 sin

r x r y r z e

e

e

e

a

ν φ λ ν φ λ ν

ν φ ν φ

ν φ ν φ ν φ

ν φ

+ + = + + −

= + −

= + −

= −

=

 

 
0 0 0

2 sin cos 2e Nν φ φ− +

( ) (
( )

2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0

2 2 2
0 0

1 sin sin 1

1 sin

x y z E N U e e e

e U

ν φ ν φ

ν φ

+ + = + + + − − −

−

2z  2 2e z′

 23 33  (33) 
{

}
2 2 2 2 2 2 2 2 2

13 23 33 13 23 13 33

2
0 13 0 23 0 33 0

2 2 2

2 2 2

e z e r E r N r U r r EN r r EU r r NU

z r Ez r Nz r Uz

′ ′= + + + + +

+ + + +

where 

( )
( ) ( )

2 2 2 2 2
13 23 33

13 23 13 33 23 33 0 0
2

2 2 2 2
0 0 0

2 2
13 0 23 0 0 0 0 33 0 0 0

0; cos ; sin ;

2 0; 2 0; 2 2 cos sin ;

1 sin ;

2 0; 2 2 1 cos sin ; 2 2 1 sin

r r r

r r r r r r

z e

r z r z e r z e

φ φ
φ φ

ν φ

ν φ φ ν

= = =
= = =

= −

= = − = −
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and equation (33) can be expressed as 

0
φ

But 

( )
( ) ( ) ( )

2 2 2 2 2 2 2
0 0 0 0

2
2 2 2 2 2 2 2

0 0 0 0 0 0

cos sin 2 cos sin

1 sin 2 1 cos sin 2 1 sin

e z e N U NU

e e e N e

φ φ φ φ

ν φ ν φ φ ν

′ ′= + +
⎛ ⎞⎟⎜′+ − + − + − ⎟⎜ ⎟⎜⎝ ⎠

 
U

2
2

21

e
e

e
′ =

−
 so we may write 

( )
( ) ( ) ( )

( )
( )

2
2 2 2

0 0
cos sine z e N Uφ φ′ ′= +

2 2
2 2 2 2 2 2
0 0 0 0 0 02

2
2

0 0

2
2 2 2 2 2 2 2
0 0 0 0 0 0 0

1 sin 2 1 cos sin 2 1 sin
1

cos sin

1 sin 2 cos sin 2 sin

e
e e N e

e

e N U

e e e N e U

ν φ ν φ φ ν φ

φ φ

ν φ ν φ φ ν φ

⎛ ⎞⎟⎜+ − + − + − ⎟⎜ ⎟⎜⎝ ⎠−
′= +

+ − + +  (34) 

Substituting equations (32) and (34) into equation (21) gives 

 =

And simplifying and noting that 2  gives the Cartesian equation of the 

ellipsoid in local coordinates E,N,U as 

 (35) 

0
U

( )
( ) ( )

( )
( )

2
2 2 2 2 2

0 0

2 2 2 2 2 2 2
0 0 0 0

2 2 2
0 0 0 0 0

2 2 2 2 2 2 2
0 0 0 0 0 0 0

cos sin

1 sin sin 1

2 sin cos 2 1 sin

sin 1 2 sin cos 2 sin 0

E N U e N U a

e e e

e N e U

e e e N e U

φ φ

ν φ ν φ

ν φ φ ν φ

ν φ ν φ φ ν φ

′+ + + + −

+ − − −

− + −

+ − + +  

( )2 2 2
0 0

1 sine aν φ− =

 (2 2 2 2 cos sE N U e Nφ′+ + + + )
2

0 0 0
in 2 0U Uφ ν+ =

The origin of the E,N,U system is at  with coordinates  where the radius of 

curvature of the prime vertical section is 

1
P

0 0
,φ λ

( )
0 1

2 2 21 sine φ−
0

a
ν =  and the first and second 

eccentricities of the ellipsoid  are obtained from  and ( ),a f ( )2 2e f f= −
2

2

21

e
e

e
′ =

−
 

Equation (35) is similar to an equation given by Bowring (1978, p. 363, equation (10) with 

, ).  Bowring does not give a derivation, but notes that his equation 

is taken from Tobey (1928). 

 

x N≡  y U≡ − z E≡
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ORMAL SECTION CURVE 

The Cartesian equation of the normal section curve is developed as a function of local 

Cartesian coordinates  which are rotated from the local E,N,U system by the 

azimuth  of the normal section plane. 

CARTESIAN EQUATION OF THE N

, ,ζ η ξ

α

 

z

x

y
O a
•

ν0
norma

P

U
N

E

a

a

b

•

•

•
P

l
φ0

λ0

equator

H

1

2

α

ellipsoid

 

 

tion plane between 

having an azimuth  between  and  on the 

llipsoid and a local Cartesian coordinate system E,N,U  origi

Cartesian equations of the ellipsoid in geocentric and local coordinates given by equations 

 

Figure 5:  Normal sec
1
 and 

2
P  on the ellipsoid 

Figure 5 shows a normal section plane 

P

 α

 with an

 
1

P

n a
2

P

e t 
1

P . 

(1), (21) and (35) are: 

2x y+

 2 2 2 2y z e z a′+ + + −

2 2

2 2
1

z

a b
+ =  

Consid  a rota n of t

al section plane and the rotated E-axis is p rpendicular to 

e plane.  Denote this rotated E,N,U system as  shown in Figure 6 

 

2 2 0x =  

 ( )2 2 2 2
0 0 0

cos sin 2 0E N U e N U Uφ φ ν′+ + + + + =  

er tio he E,N,U system about the U-axis by the azimuth α  so that the 

rotated N-axis lies in the norm

2

e

, ,ζ η ξth



z

x

y
O

P

U

E

a

a

a

b

•
•

•

•

ν0
normal

N
P

λ0

α

ellipsoid

(ξ)
η

φ0

equator

H

1

2

ζ

 

 

Figure 6:  Rotated local coordinate system 

 

These two local Cartesian systems; E,N,U and  are related by 

 

ζ

, ,ζ η ξ  

, ,ζ η ξ
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0 0 1

and

ξ

cos sin 0

si co

cos sin 0

0 0 1

E

U

E

U

ζ α α

α α

ξ

n s 0 Nη α α

sin cos 0N α α η

⎡ ⎤ ⎡ ⎤ ⎡− ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎥ ⎢⎣ ⎦ ⎣ ⎦⎦ ⎣

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣

 

⎦

te 

α

α  (36) 

(37) 

•

α

U(ξ)
E

N  sin α

ζ

E  sin α
E cos α

ηN

N cos α

 

and we may wri

 o

2 2 2 2 2

2 2 2 2 2

cos sin ; cos sin 2 cos sin

cos sin ; sin cos 2 c s sin

E E

N N

ζ α η α ζ α η α ζη α

η α ζ α ζ α η α ζη α

= + = + +

= − = + −
2 2U Uξ ξ= =

giving 

 2 2 2 2 2E N U ζ η ξ+ + = +  2 +
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Substituting equations (36) and (37) into equation (35) gives 

 
0

 (38) ( )22 2 2 2
0 0 0

sin cos cos cos sin 2 0eζ η ξ ζ α φ η α φ ξ φ ν ξ′+ + + − + + + =

 

This is the Cartesian equation of an ellipsoid where the local Cartesian coordinates 

have an origin at on the ellipsoid  with the  in the directio

outward normal at e normal section plane making 

an angle lane of  plane is perpendicular to the 

normal section plane.  As befo

, ,ζ η ξ  

n of the ( )1 0 0
,P φ λ  

1
P ; the 

 with the meridi

( )

 ( ),a f

 plane is coincident with th

 and the 

-axisξ

re the radius of curvature of the prime vertical section is 

-ξ η

an pα
1

P ; -ξ ζ

0 1
2

)f  a

2 2
0

1 sin

a
ν

φ

=  and the first and o e tie ellipsoi re obtained

from 

e−

e f

 sec nd ecc ntrici s of the d a  

(2 2= −
2

2

2

e
e ′ = . nd 

1 e−

 

Setting 0  in equation (38) will give the equation of the normal section plane as 

  (39) 

ζ =

( )22 2 2
0 0 0

cos cos sin 2 0eη ξ η α φ ξ φ ν ξ′+ + + + =

 

Expanding equation (39) gives 

 
0

=

which can be simplified to 

 0ξ  (40) 

2 2 2 2 2 2 2 2 2 2
0 0 0 0

cos cos sin 2 cos cos sin 2 0e e eη η α φ ξ ξ φ ηξ α φ φ ν ξ′ ′ ′+ + + + +  

( ) ( )2 2 2 2
0

1 2 1 2g gh hξ ξη η ν+ + + + + =

where g and h are constants of the normal section and 

0 02

0 02

sin sin
1

cos cos cos sin
1

e
g e

e
e

h e
e

φ φ

α φ α φ

′= =
−

′= =
−

  (41) 

n (40) is similar to Clarke (1880, equation 14, p. 107) although Clarke's derivation 

 different and very concise; taking only 11 lines of text and

Equatio

is  diagrams. 
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 POLAR EQUATION OF THE NORMAL SECTION CURVE

 

normal section curve

z

x

O

P •

P

y

a

•
•

•

ν0
normal

φ0

1

2

η

ζ

equator

H

ξ θ chor
d

r

 

Figure 7:  Normal section curve 

given 

by equations (40) and (41) given the latitude  of , the ellipsoid cons  and the 

azimuth  of the normal section plane. 

he equation of the curve in polar coordinates

 

( ),f ξ η  

The Cartesian equation of the normal section curve in local coordinates , , 0ξ η ζ =  is 

 
0

φ
1

P tant 2e

 α

T  ,r θ ; where r is a chord of the curve and 

rd, can be obtained in the following manner.   

irst, from Figure 7, we may write 

 (42) 

And second, we may re-arrange equation (40) as 

 ξ  (43) 

Squaring equations (42) and adding gives 

 2r  (44) 

and the third term in equation (43) can be expressed as 

 

θ

 (45) 

θ  

is the zenith distance of the cho

F

cos

sin

r

r

ξ θ
η θ
=
=

 

( ) 0
2g hξ η ξ η ν+ + + = −

22 2

2 2 2 2 2 2cos sinr rξ η θ θ+ = + =

( ) ( )2
cos sing h g r h rξ η θ θ+ = +

( )

2

2 2 2 2 2 2 2

22

cos sin 2 sin cos

cos sin

g r h r gh r

r g h

θ θ θ

θ θ

= + +

= +
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rranging gives the polar 

quation of the normal section curve 

 

Substituting equations (44) and (45) into equation (43) and re-a

e

( )
0

2

2 cos

1 cos sin
r

g h

ν θ

θ θ

−
=

+ +
 (46) 

 

ARC LENGTH ALONG A NORMAL SECTION CURVE 

To evaluate the arc length s along the normal section curve, consider the following 

 

ξ

η

θ

r

A

B

M

r 
 r
+ Δ

Δθ

Δs

Δr

Δs

Δθr

A

B

M

O  

gt on e 

 8  and the arc length  is approximated 

 

 

Figure 8:  Small element of arc len h al g a normal section curv

In Figure , when θΔ  is small, then AM r θΔ�

r 

sΔ

by the chord AB and ( ) ( ) ( )
22 2

s r rθΔ Δ + Δ�  o

( ) ( )

( )

2 2

2
2 2

sΔ r r

r
r

θ

θ

= Δ + Δ

⎛ ⎞⎛ ⎞ ⎟⎜ Δ⎜= Δ +⎜⎜⎜⎜⎝ ⎠

 

 

θ
⎟ ⎟⎜ ⎟ ⎟⎜ ⎟ ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠ ⎟

and 

2

2s
r

r
θ

⎛ ⎞Δ Δ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜Δ⎝ ⎠
 

aking the limit of

θΔ

 
s
θ

Δ
Δ

T  as  gives 

 

0θΔ →

2

2

0
lim

s ds dr
r

d dθ θ θ θΔ →

⎛ ⎞ ⎛ ⎞Δ ⎟ ⎟⎜ ⎜⎟ ⎟= = +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜Δ⎝ ⎠ ⎝ ⎠
 (47) 



and the arc length is given by 
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1
2 2

2
B

A

dr
s ds r d

d

θ θ

θ θ

θ
θ

=

=

⎧ ⎫⎪ ⎪⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜ ⎟= = +⎜⎨ ⎬⎟⎜ ⎟⎪ ⎜ ⎪⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∫ ∫  (48) 

Referring to Figure 7 the  is tangential to the normal section curve  at  and 

the zenith distance 

-axisη  
1 2

PP
1

P

2A

π
θ θ= =

 and the arc length of the norm

 and .  And when  then

al section

 

0r =
2B

θ θ θ= =

 curve is given by 

 the chord 

1 2
r PP=

2

1
2 2

2

2

dr
s ds r d

d

θ θ

π
θ

θ
θ

=

=

⎧ ⎫⎪ ⎪⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜ ⎟= = +⎜⎨ ⎬⎟⎜ ⎟⎪ ⎜ ⎪⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∫ ∫  (49) 

 

r is given by equation (46) with normal section constants g and h given by equations (41). 

The derivative 
dr
dθ

 can be obtained from equation (46) using the quotient rule for 

differential calculus 

2

du dv
u−

 
vdr d u d d

d d v v
θ θ

θ θ

⎛ ⎞⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (50) 

where 

 
( )

( )(

2

0

0

2 cos ; 1 cos sin

2 sin ; 2 cos sin cos sin

u v g h

du dv
g h h g

d d

ν θ θ θ

ν θ θ θ θ
θ θ

= − = + +

= = + )θ−
 (51) 

rc length of the normal section curve between  and  can be found by evaluating 

the integral given in equation (49).  This integral cannot be solved analytically but may be 

valuated by a numerical integration technique known omberg integration

The a
1

P
2

P

e R .  Appendix 1 

contains a development of the formula used in Romberg integration as well as a MATLAB 

ing algorithfunction demonstrat  the m. 
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 INVERSE PROBLEMS ON THE ELLIPSOID USING 

NORMAL SECTIONS 

he direct problem

SOLVING THE DIRECT AND

T  on an ellipsoid is: given latitude and long

the normal section  and the arc length s along the normal section curve; compute the 

. 

itude of 
1

P , azimuth 
12

α  of 

 
1 2

PP

latitude and longitude of 
2

P

The inverse problem on an ellip s: giv es and long

compute ion curve 

Note 1. In general there are two normal section curves joining  and .  We are only 

dealing with the single normal section (contain

Figure 3) and so only the forward azimu

azimuth  is the azimuth of the no n mal at 

) which is a different curve 

Note 2. The usual meaning of: solving the direct and inverse problems on the ellipsoid 

soid i en the latitud itudes of 
1

P  and 

 the azimuth 
12

α  and the arc length s along the normal sect
2

P  

. 
1 2

PP

1
P

2
P

 is given or computed.  The reverse 

 (containing the nor

. 

1 2
PP  

th 

rmal sec

ing the normal at 
1

P  – see 

12
α

tio

from normal section curve 

 
21

α
2 1

P P

2 1 2
P PP

would imply the use of the geodesic; the unique curve defining the shortes

distance between two points.  An

t 

d solving these problems is usually done using 

Bessel's method with Vincenty's equations (Deakin & Hunter 2007) or Pittman's 

method (Deakin & Hunter 2007). 

In the solutions of the direct and inverse problems set out in subsequent sections, the 

g notation and relationships are used. 

 a, f semi-major axis length and flattening of ellipsoid. 

b semi-minor axis length of the ellipsoid, 

 eccentricity of ellipsoid squared, 

followin

( )1b a f= −   
2e  ( )2 2e f f= −  

2
2

2
 2e′  2nd-eccentricity of ellipsoid squared, 

1
e

e
′ =

−
 

 ,φ λ  latitude and longitude on ellipsoid: 

e

 measured 0  to 90φ ±D D  (north latitudes 

  positive and south latitudes negative) and  measured 0  to 180λ ±D D  (east  

  longitudes positive and west longitudes negative). 

 s length of the normal section curve on the ellipsoid. 

 azimuth of normal section 

 azimuth of normal section  (measured in the local horizon plane of ) 

 reverse azimuth; azimuth of normal section 

 c chord 

 zenith distance of the chord c 

12α  1 2PP  

12
α′  

2 1
P P  

1
P

21α  2 1P P  

1 2PP  

θ  
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d where the z-axis is coincident with the rotational axis of the 

torial p

n coordinates with an origin at the centre of the 

ellipsoid and where the z'-axis is coincident with the rotational axis of the 

' is he 

m t  x,y,z 

 vec dire to 2 

k

i  

f 

 x,y,z are geocentric Cartesian coordinates with an origin at the centre of the 

ellipsoid an

ellipsoid, the x-z plane is the Greenwich meridian plane and the x-y plane is 

the equa lane of the ellipsoid. 

 x',y',z' are geocentric Cartesia

ellipsoid, the x'-z' plane is the meridian plane of P  and the x'-y plane  t

equatorial plane of the ellipsoid.  The x',y',z' system is rotated fro he
1

system by an angle 
1

λ  about the z-axis. 

tors a vector a defining the length and ction of a line from point 1  point 

is given by the formula 
i j

a a a= + +a i j  where 
2 1i

a x x= − , 
2 1j

a y y= −  

and 
2 1

z z= −  are the vector components and , j, and k are unit vectors in

the direction of the positive x, y, and z axes respectiv   T

k

k
a

ely. he components o

a unit vector ˆ =
a

a
a

 can be calculated by dividing each component by th

magnitude of the vector 

e 

2 2 2
i j k

a a a= + +a .   

 For vectors a and b the  vector dot product is cosθ=a b a bi  where θ  is 

the angle between the vectors.  For unit vectors .  The vector 

ors 

 ˆˆ cos θ=a bi

dot product is a scalar quantity 
i i j j k k

S a b a b a b= + + , hence for unit vect

the angle between them is given by cos Sθ = . 

ˆsin θ×a  For vectors a and b the vector cross product is =b a b p  where 

ne containin  a and b and in the 

 rotated from  to b.  The result of a vector 

 components are given by 

p̂  

is a unit vector perpendicular to the pla g

direction of a right-handed screw  a

cross product is another vector whose

( ) ( ) .  The components of the 

mponent of the cross pr

( )i j j i
a b a b a b a b a b a b× = − − − + − k

unit vector p̂  are found by dividing each co

j k k j i k k i
a b i j

oduct by 

the magnitudes a  and b , and the sine of the angle between them.  For unit 

vectors ˆˆ ˆsin θ× =a b p  and for perpendicular unit vectors .  ˆˆ ˆ× =a b p
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The direct pr

. 

With the ellip e 

solved by the

 

1. Comput  vertical plane of  from 

 

THE DIRECT PROBLEM ON THE ELLIPSOID USING A NORMAL SECTION 

oblem is: Given latitude and longitude of 
1

P , azimuth 
12

α  of the normal 

section 
1 2

PP  and the arc length s along the normal section curve; 

compute the latitude and longitude of 
2

soid constants 2 2, ,  and a f e e′  and given 
1 1 12
, ,φ λ α  and s the problem may b

 following sequence. 

e 
1
ν  the radius of curvature in the prime

P

 1P

( )
1

1

a

e the constants g and h of the normal section 
1 2

PP  from 

1
2 2 21 sine

ν

φ

=

−

 

2. Comput

 
1 12

12 12

sin

cos

e
g

h e

φ φ

α α

=

′= =
1 12

sin
1

cos cos sin
1

e
e

e

e
φ φ

′=
−

−

 

3. Compute the chord  and the zenith distance  of the chord  by iteration 

using the following sequence of operations until there is negligible change in the 

comput

 (i) 

1 2 1 2

ed chord distance 

c PP= θ PP

 start Set the counter 1k   and set the chord 
k

c s

Set the counter 1n =  and set the zenith distance 

= =  

2n

π
θ =  

Use Newton-Raphson iteration to compute the zenith distanc

( ) ( ) 1
cos sin 2 cos 0f c c g hθ θ θ ν θ= + + − =  and the iterative formula 

)

 (ii) e of the 

chord using equation (46) rearranged as 
2

(
( )1

n
f

θ θ= −  where ( )f θ′  is the derivative of ( )f θ  and 
n n

n
f

θ

θ+ ′

( ) (
( ) (2 cos

n k k

n k

f c

f c

= +
′

n

)
sin

sin
n

h

h

+

n

1
2 sin

θ

θ −
)

( )

2

1
cos 2 cos

cos sin
n n

n n n n

c g

g h g

θ θ θ ν

θ θ θ θ ν

−

= + −

 

n
θ

  Note that the iteration for  is terminated when  and  differ by an 

acceptably small value. 

 (iii) Compute the arc length  using Romberg integration given 

θ
n
θ

1n
θ

+

k
s

1 12
, , , ,a f φ α θ  



 (iv) Compute the small change in arc length 
k

ds s s= −  
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 (vi) Increment 

 end Iteration for the chord  and the zenith distance  of the chord 

lete. 

 using 

 

1

5. Compute coordinate differences ′  in the  using 

 

6. Rotate the x',y',z' coordinate differences to x,y,z coordinate differences by a rotation 

of  about the z'-axis using 

 

x, f

 y

8. Compute la  using Bowring's 

method. 

Shown below is the output of a MA functi  that s the 

direct problem on the ellipsoid for normal sections. 

The ellipsoid is the GRS80 ellipsoid and  for  are  and  respectively with 

′  and .  

 (v) If 0.000001ds <  then go to end; else go (vi) 

k, compute new chord c c ds= −  and go to (i) 
1k k−

 
1 2

c PP= θ

1 2
PP  is comp

4. Compute the x,y,z coordinates of 
1

P

1 1 1 1
cos cosx ν φ λ=

( )
1 1 1 1

2
1 1

cos sin

1 sin

y

z e

ν φ λ

ν φ

=

= −

 

, ,x y z′ ′Δ Δ Δ , ,x y z′ ′ ′

12 1 1

12

12 1 1

cos

sin sin

sin cos cos cos sin

y c

z c c

θ α
θ α φ θ φ

′Δ =
′Δ = +

 

sin cos sin cosx c cθ α φ θ φ′Δ = − +

1

1 1

z

′ ′Δ = Δ +Δ
Δ

λ

1 1

cos sin

sin cos

x x y

y x y

z

λ λ
λ λ

′ ′Δ = Δ −Δ

′= Δ
 

7. Compute y,z coordinates o using  
2

P  

2 1
x x x= +Δ

2 1
y y= +Δ  

2 1
z z z= +Δ

titude and longitude of P  by conversion

TLAB on nsection_direct.m  solve

2
 , , , ,x y z hφ λ⇒

,φ λ

228.924

1P

736 m

10− D

,φ λ  co

110D

mputed
12

140 28 31.981931α ′ ′= D 5783s =  for  are 

 

2P 45− D  

a s ively. nd 155D  re pect
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// Normal Section: Direct Case // 

ellipsoid parameters 
a   =  6378137.000000
f   = 1/298.257222101000 

 
Latitude  P1 =  -10  0  0.000000 (D M S) 
ongitude P1 =  110  0  0.000000 (D M S) 

Azimuth of normal section P1-P2 
Az12  = 140 28 31.981931  (D M S) 
 

 
chord distance P1-P2 
 =   5586513.169887 
terations =   13 

 
Zenith distance of chord at P1 
zd     = 116  2 20.450079  (D M S) 

 
Carte  
            X               Y               Z 
P1   -2148527.045536  5903029.542697 -1100248.547700 
P2   -4094327.792179  1909216.404490 -4487348.408756 
X = -1945800.746643 
Y = -3993813.138207 

dZ = -3387099.861057 
 

 
>> 

 

 
>> nsection_direct 

///////////////////////////////// 

///////////////////////////////// 
 

000 

e2  =  6.694380022901e-003 
ep2 =  6.694380022901e-003 

L
 

normal section distance P1-P2 
s =   5783228.924736 

c
i

iterations =    5 

sian coordinates 

d
d

Latitude  P2 =  -45  0  0.000000 (D M S) 
Longitude P2 =  154 59 60.000000 (D M S) 
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HE INVERSE PROBLEM ON THE ELLIPSOID USING A NORMAL SECTION 

 is: Given latitudes and longitudes of  and  on the ellipsoid 

e azimuth  of the norm  and the arc 

he normal section curve. 

ts  and given  the problem may be 

ence. 

ature in the prime vertical plane of  and 

T

1P 2P

al section

The inverse problem

12α  
1 2

PPcompute th

length s of t

 2 2, , and a f e e′ 1 1 2 2,  and ,φ λ φ λWith the ellipsoid constan

solved by the following sequ

 

1. Compute ν  and ν  the radii of curv  1P
2

P  
1 2

from 

( )
1

2 2 21 sin

a

e

ν

φ

=

−

  

2. Compute the x,y,z coordinates of , ,  and  noting that  is at the 

xis of the ellipsoid and 

m  and the rotational axis.  Coordina

obtained from 

 are zero and the z coordinate is obtained from 

3. Compute the coordinate differences 

 

4a. Compute vector k  in the direction of the chord .   

4b. Compute chord distance 

1P

h P

al t

2P

1

hrou

3
P

 and th

gh 

4
P

e rotational a
3

P

4
P  

te 

intersection of the normal throug

2Pis at the intersection of the nor

of 1P  and 2P  are 

cos cosx ν φ λ=

 

( )21 sinz eν φ= −

 cos siny ν φ λ=

 The x and y coordinates of P  and P
3 4

2 sinz eν φ= −   

2 1

2 1

2 1

x x x

y y y

z z z

Δ = −

Δ = −
Δ = −

 

( ) ( ) ( )x y z= Δ + Δ + Δc i j
1 2

PP

 and the unit vector ˆ =
c

c
c

 c = c

5. Compute vector k  and the unit vector ( ) ( ) ( )1 1 1 3
x y z z= + + −u i j ˆ =

u
u

u
 in the 

direction of the outward normal through 
1

P . 



6. Set the unit vector ˆ 0 0 1= + +z i j k  in the direction of the z-axis 
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8. Compute the unit vector  perpendicular to the meridian plane of  from vector 

e direction of east) 

7. Compute the zenith distance of the chord from the vector dot product 

ˆ ˆ ˆ ˆ ˆcos
i i j j k k

u c c u cθ = + +  û

ê  P
1

cross product ( ê  is in th

 
1 1 1 1

cos cos cos cosφ φ⎜⎟ ⎟⎜ ⎜⎝ ⎠

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ
ˆ j k k j i j j ii k k i

z u z u z u z uz u z u

φ φ

⎛ ⎞⎛ ⎞− −−× ⎟ ⎟⎜ ⎜⎟⎜⎟ ⎟⎟⎜ ⎜⎜= = − +⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎟

⎛ ⎞

⎝ ⎠

z u
e i j k  

9. ute the unit vector  in the meridian plane of  from vector cross product.  

 is in the direction of north) 

 

d l to tor 

o

 

⎝ ⎠

Comp  n̂
1

P

( n̂

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
j k k j i k k i i j j i

u e u e u e u e u e u e= × = − − − + −n u e i j k  

10. Compute the unit vector p̂  perpen icu ar  the normal section 
2

P  from vec

cross product.  ( p̂  lies in the local h rizon plane of 
1

P ) 
1
P

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ
sin sin

j k k j i j j ii k k i
u c u c u c u cu c u c

θ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞− −× ⎟ ⎟⎜ ⎜⎟⎜⎟ ⎟⎟= = ⎜⎜⎜⎝

u c
ˆ

sin sinθ θ
−⎜ ⎜⎜− +⎟ ⎟⎟ ⎜⎜⎟ ⎟⎟ ⎜⎟⎜⎟ ⎟⎜⎝ ⎠⎠ ⎝ ⎠

p i j k  

11. Compute the unit vector  in the local horizon plane of  and in the direction of 

the normal section  from vector cross product. 

 k

12. Compute the azimuth  if the normal section  using vector dot products to 

first compute angles  (between  and ) and  (between  and ) from 

 

 If  then ; else 

or

ĝ  
1

P

 
1 2

PP

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆp u p u p u p u p u p u= × = − − − + −g p u i j  
j k k j i k k i i j j i

 
12

α  
1 2

PP

βα n̂ ĝ ê ĝ

ˆ ˆ ˆ ˆ ˆ ˆcos

ˆ ˆ ˆ ˆ ˆ ˆcos
i i j j k k

i i j j k k

n g n g n g

e g e g e g

α
β
= + +
= + +

 

90β > D
12

360α α= −D
12

α α=  

13. Compute the vect )z k  and the unit vector  ( ) ( ) (1 1 1 4
x y z= + + −w i j ˆ =w  (w

w
w

 is 

ian pl e of ). 

14. Compute the angle  between  and  from the vector dot product 

in the direction of the line  and lies in the merid an 
4 1

P P  
1

P

γ ŵ ĉ

 ˆ ˆ+  ˆ ˆˆ ˆcos
i i j j k k

w c w c w cγ = +
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  between an ct  lies in the 

ˆ

 from vector 

15. Compute the angle d û  from the vector dot produδ ŵ  (δ

meridian plane of 
1

P ) 

ˆ ˆ ˆˆ ˆcos
i i j j k k

w u w u w uδ = + +   

16. Compute the unit vector  perpendicular to the normal section 
2

cross product 

q̂
1

P P

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ ˆˆ ˆ
ˆ

sin sin sin sin
j k k j i j j ii k k i

w c w c w c w cw c w c

γ γ γ γ

⎛ ⎞ ⎛⎛ ⎞− −−× ⎟ ⎟⎜ ⎜⎟⎜⎟ ⎟⎟⎜ ⎜⎜= = − +⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎟⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠ ⎝

w c
q i j  

⎞

⎠
k

oss product. 

 

17. Compute the unit vector  in the local horizon plane of 
1

P  and in the direction of 

the normal section 
2 1

P P  from vector cr

ĥ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ
cos cos cos cos

j k k j i j j ii k k i
q u q u q u q uq u q u

δ δ δ δ

⎛ ⎞ ⎛⎛ ⎞− −−× ⎟ ⎟⎜ ⎜⎟⎜⎟ ⎟⎟⎜ ⎜⎜= = − +⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎟⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠ ⎝

q u
h i j 

⎞

⎠
 

18.  using vector dot products to 

first compute angles  (between  and ) and  (between  and ) from 

 
ˆ

19. Compute the small angle  between the two normal section planes at

 

k

Compute the azimuth 
12

 of the normal section 
2

ˆ

α′
1

P P

βα n̂ h ê ĥ

ˆ ˆˆ ˆ ˆcos
ˆ ˆ ˆˆ ˆ ˆcos
i i j j k k

i i j j k k

n h n h n h

e h e h e h

α

β

= + +

= + +
 

 If 90β > D  then 
12

360α α′ = −D ; else 
12

α α′ =  

ε  
1

P  

12 12
ε α α′= −  

20.  along the normal section curve 

Integration. 

hown below is the output of a MATLAB function nsection_inverse.m that solves the 

inverse problem on the ellipsoid for normal sections. 

S80 ellipsoid  for  are  and  respectively and 

f  respectively.   

Computed

Compute arc length s
1 2

PP  using Romberg 

S

λ 1P 10− D 110DThe ellipsoid is the GR and ,φ

,φ λ or 
2

P  are 45− D  and 155 D

 azimuths are ′  and ′′ , and 
12 12

. 

140 28 31.981931α ′ ′= D 140 32 18.496009α′ ′= D

5783228.924736 ms =
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////////////////////////////////// 

///////////////////////////////// 
 

f   = 1/298.257222101000 
e2  =  6.694380022901e-003 
ep2 =  6.694380022901e-003 
 
atitude  P1 =  -10  0  0.000000 (D M S) 

 
Latitude  P2 =  -45  0  0.000000 (D M S) 

 
Carte
            X               Y               Z 
P1   -2148527.045536  5903029.542697 -1100248.547700 
2   -4094327.792180  1909216.404490 -4487348.408755 
3          0.000000        0.000000     7415.121539 

P4          0.000000        0.000000    30242.470131 
dX = -1945800.746645 

 
Chord
chord   =   5586513.169886 

enith distance of chord at P1 
zd      = 116  2 20.450079  (D M S) 
 

n rm ion P1-P2 
4  2 1931  (D M S) 

 
u  

Az21    = 297 47 44.790362  (D M S) 

zimuth of normal section P2-P1 at P1 
Az'12   = 140 32 18.496009  (D M S) 

epsilon =    0  3 46.514078 (D M S) 
 
ROMBERG INTEGRATION TABLE 

2  5783278.294728  5783228.549649 

4  5783232.004951  5783228.923298  5783228.924742  5783228.924736 
8.9  28.9

 
normal section distance P1-P2 
s =   5783228.924736 

 

 

 

 

 

 
>> nsection_inverse 

// Normal Section: Inverse Case // 
/

ellipsoid parameters 
a   =  6378137.000000000 

L
Longitude P1 =  110  0  0.000000 (D M S) 

Longitude P2 =  155  0  0.000000 (D M S) 

sian coordinates 

P
P

dY = -3993813.138206 
dZ = -3387099.861055 

 distance P1-P2 

 
Z

Azimuth of o al sect
Az12    = 1 0 8 31.98

Azim th of normal section P2-P1

 
A

 
Angle between normal sections at P1 

1  5783427.529966 

3  5783241.249912  5783228.901640  5783228.925106 

5  5783229.694723  5783228.924646  578322 24736  57832 24736 

 
>> 
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NGTH BETWEEN GEODESIC AND NORMAL SECTION 

eodesy; the geodesic

DIFFERENCE IN LE

There are five curves of interest in g , the normal section, the great 

elliptic arc the loxodrome and the curve of alignment.   

nd  on an ellipsoid is the unique curve on the surface defining 

e rves will be longer in length.  The normal section curve 

 he intersection of the normal section plane containing the 

 surface.  And as we have shown there is the 

e of alignment is the locus of all points Q such 

tains the points  and .  The curve of 

 elliptic arc the p ane curve created by 

 O with the surface of the ellipsoid 

s eac erid  between  and 

s for the difference in length between the geodesic, the normal 

of alignment were developed by Clarke (1880, p. 133) and 

ate equation for the difference between the 

g Bowring (1972), let 

The geodesic between 
1

P  a  
2

P

r cu

by t

the shortest distance; all oth

1 2
P  is a plane curve createdP

normal at 
1

P  and also 
2

P  with the ellipsoid

other normal section curve 
2 1

P P .  The curv

that the normal section plane at Q also con
1

P

 is 

h m

2
P

l

ian

alignment is very close to a geodesic.  The great

intersecting the plane containing P , P  and the centre
1 2

and the loxodrome is the curve on the surface that cut
1

P
2

P  

at a constant angle. 

Approximate equation

section curve and the curve 

Bowring (1972, p. 283) developed an approxim

geodesic and the great elliptic arc.  Followin

 geos = desic length

 normal section length

 great elliptic length

e of alignment length

  
D =
L =

 cuS = rv

then 

44
4 2 2

1 12 12

 
24

2 2 2e s⎛ ⎞⎟⎜
1 1 12

sin cos sin
24

D s s
R

φ φ α⎟− = +⎜ ⎟⎜ ⎟⎜⎝ ⎠
"

44
4 2 2

1 12 12

cos sin cos

cos sin cos
360

e s
s

R

e s
S s s

R

φ α α

φ α α

⎛ ⎞⎟⎜ ⎟ +⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜ ⎟− = +⎜ ⎟⎜ ⎟⎜⎝ ⎠

"

"

 (52) 

here R can be taken as the radius of curvature in the prime vertical at .  Now for a 

given value of s,  will be a maximum if  (  on the equator) and  in 

which case 

90
L s− =

w
1

P

 L s−
1

0φ = D
1

P
12

45α = D

4 2sinφ α 2
1 12 12

1
cos cos

4
α = , thus 
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 ( )
44e s⎛ ⎞⎟⎜ ⎟

360 R⎟⎜⎝ ⎠

For the GRS80 ellipsoid where 

L s s− < ⎜ ⎟⎜  (53) 

( )21 298.257222101,f e= = 2f f− , and for 1600000 ms =  

and 6371000 mR =  and equation (53) gives 0.001 mL s− < . 

This can be verified by using two MATLAB functions:  Vincenty_Direct.m that compute

direct case on the ellipsoid for the geodesic and nsection_inverse.m that computes the 

inverse case on the ellipsoid for the normal section.  Suppose 
1

P  has latitude and longitud

1
0φ = D , 

1
0λ = D  on the GRS  ellipsoid and that the azimuth and distance of the geodesic

are 
12

45α = D  and 1600000

s 

the 

e 

80  

 ms =  respectively.  The coordinates of  are obtained fro

Vincenty_Direct.m as shown below.  These values are then used in nsection_direct.m to 

compute the normal section azimuth and distance 
1 2

PP . 

The difference 0.000789 mL s− = . 

2
P m 

 

ellipsoid parameters 
a    =  6378137.000000000 
f    = 1/298.257222101000 
b    =  6356752.314140356100 

   =  6.694380022901e-003 

 
Latitude & Longitude of P1 
latP1 =   0  0  0.000000 (D M S) 

Azimuth & Distance P1-P2 
az12 =   45  0  0.000000 (D M S) 
s    =    1600000.000000 
 
Latitude and Longitude of P2 
latP2 =  10 10 33.913466 (D M S) 
lonP2 =  10 16 16.528718 (D M S) 

alpha21 = 225 55  1.180693 (D M S) 
 
>> 
 
 

/////////// 

ellipsoid parameters 
a   =  6378137.000000000 
f   = 1/298.257222101000 
e2  =  6.694380022901e-003 
ep2 =  6.694380022901e-003 
 
Latitude  P1 =    0  0  0.000000 (D M S) 
Longitude P1 =    0  0  0.000000 (D M S) 
 
Latitude  P2 =   10 10 33.913466 (D M S) 
Longitude P2 =   10 16 16.528718 (D M S) 
 
Azimuth of normal section P1-P2 
Az12    =  45  0  7.344646  (D M S) 
 
ROMBERG INTEGRATION TABLE 
1 1600010.313769 
2 1600002.577521 1599999.998771 
3 1600000.644877 1600000
4 1600000.161805 1600000.000781 1600000.000789 
  1600000.000789 
 
normal section distance P1-P2 
s =   1600000.000789 
 
>>

 1,600 km.  At 5,800 km erence is approximately 0.380 m. 

 
>> Vincenty_Direct 
 
////////////////////////////////////////////// 
// DIRECT CASE on ellipsoid: Vincenty's method 
////////////////////////////////////////////// 
 

 
>> nsection_inverse 
 
////////////////////////////////// 
// Normal Section: Inverse Case // 
///////////////////////
 

e2
ep2  =  6.739496775479e-003 

lonP1 =   0  0  0.000000 (D M S) 
 

 
Reverse azimuth 

.000663 1600000.000789 

 
 
 

Differences in length between the geodesic and normal section exceed 0.001 m for distances 

greater than the diff
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MATLAB FUNCTIONS 

Shown below are two MATLAB functions nsection_direct.m and nsection_inverse.m that 

te the use of Romberg integration in the solution of the 

 

 
tion nsec irect 

ctio P1-P2 and distance  
tude nd longitude of P2. 

  
------------------- --------------------------------------- 

% Function:  nsection_direct 
 
 Usage:     nsection_direct 

eakin,  
l of Mathematical & Geospat University 

30

9 
n  1.1  16 December  2009 

verse:  This function se for  
 reference ellipsoi
of P1 and the azimu P1-P2  
normal section curv nd  

,Az12,zd) 
at,X,Y,Z) 

ormal section P1-P2
of spheroid 
 conversion fac

ccentricity of ellipsoid squar
quared 
flattening of

lat     - denominator of flattening of el
_zd     - function of the zenith distance

 fdash_zd - derivative of the function of t
 

 lat1     - latitude of P1 (radians) 
 lat2     - latitude of P2 (radians) 
 lon1     - longitude of P1 (radians) 

%  nu1      - radius of curvature in prime vertical plane at P1 

%  s        - arc length of normal section P1-P2 
%  s2       - sin-squared(latitude) 
%  x,y      - local variables in newton-Raphson iteration for zenith 
%             distance of chord P1-P2 
%  X1,Y1,Z1 - Cartesian coordinates of P1 

have been written to demonstra

direct and inverse case on the ellipsoid using normal sections.  These functions call other

functions; DMS.m, Cart2Geo.m and romberg.m that are also shown. 

 

MATLAB function nsection_direct.m 

func tion_d
% 
% nsection_direct:  This function computes the direct case for a normal  
% section on the reference ellipsoid.  That is, given the latitude and 
% longitude of P1 and the azimuth of the normal se n 
% along the normal section curve, compute the lati  a

%-------------- --

%
%
% 
% Author:    R.E.D
            Schoo% ial Sciences, RMIT 

%            GPO Box 2476V, MELBOURNE, VIC 01, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  23 September 200
%            Versio
 %
% Purpose:   nsection_in  computes the direct ca
%  a normal section on the

 
d.  That is, given the  

%  latitude and longitude th of the normal section 
, compute the latitude a%  and distance along the 

 longitude of P2. 
e

% 
% 
% Functions required:   
%  [D,M,S] = DMS(DecDeg) 
%  s = romberg(a,f,lat1
%  [lat,lon,h] = Cart2Geo(a,fl
%         
 Variables:  %
%  Az12     - azimuth of n  
%  a        - semi-major axis 
%  d2r      - degree to radian tor 57.29577951... 
%  e2       - e ed 
%  eps      - 2nd-eccentricity s
  f        - f = 1/flat is the %  ellipsoid 

%  f
  f

lipsoid 
%  

 zenith distance % he
%  g,h      - constants of normal section
% 
% 
% 
%  lon2     - longitude of P2 (radians) 

%  pion2    - pi/2 
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ordinates of P2 
ordinates of P3 

%  X4,Y4,Z4 - Cartesian coordinates of P4 

% 

 

 
nces, 

%          RMIT University, November 2009. 
 
-------------------------------------------------------------------------- 

  
nd pi/2 

on2 = pi/2; 

 

lipsoid 

 vertical plane at P1 

2); 

nith distance of the chord of the normal 

 equal to the arc length 

on-Raphson iteration 

; 

after 10 

%  X2,Y2,Z2 - Cartesian co
%  X3,Y3,Z3 - Cartesian co

%  zd       - zenith distance of chord 

% Remarks: 
%
% References: 
%  [1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
%          Lecture Notes, School of Mathematical and Geospatial Scie

%
%

% Set degree to radian conversion factor a
d2r   = 180/pi; 
pi
  

et ellipsoid parameters% S
a    = 6378137;    % GRS80 
flat = 298.257222101; 
 
% Compute ellipsoid constants 

 = 1/flat; f  
e2  = f*(2-f); 
ep2 = e2/(1-e2); 
  
% Set lat and long of P1 on el

1 = -10/d2r; lat
lon1 = 110/d2r; 
  

l section % Set azimuth of normal section P1-P2 and arc length of norma
Az12 = (140 + 28/60 + 31.981931/3600)/d2r; 
s    = 5783228.924736; 
  

1] Compute radius of curvature in the prime% [
s2   = sin(lat1)^2;  
nu1  = a/sqrt(1-e2*s2); 
  
% [2] Compute constants g and h of the normal section P1-P2 
ep = sqrt(ep2); 

= ep*sin(lat1); g  
h  = ep*cos(lat1)*cos(Az1
  
% [3] Compute the chord and the ze
%     section curve P1-P2 by iteration. 
  
% Set the chord
c = s; 
iter_1 = 1; 
while 1 
    % Set the zenith distance to 90 degrees 
    zd = pion2; 
    % Compute the zenith distance of the chord using Newt
    iter_2 = 1; 
    while 1 
        x = g*cos(zd)+h*sin(zd); 
        y = h*cos(zd)-g*sin(zd); 
        f_zd = c+c*x*x+2*nu1*cos(zd);  
        fdash_zd = 2*c*x*y-2*nu1*sin(zd)
        new_zd = zd-(f_zd/fdash_zd); 
        if abs(new_zd - zd) < 1e-15 
            break; 
        end     
        zd = new_zd; 
        if iter_2 > 10 
            fprintf('Iteration for zenith distance failed to converge 
iterations'); 
            break; 
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f  zenith distance  

ew-s; 
< 1e-6 

e failed to converge after 15 iterations'); 

an coordinates of P1 
; 
; 

fferences with Z'-X' plane coincident with meridian 
P1 
*cos(Az12)*sin(lat1) + c*cos(zd)*cos(lat1); 

in(Az12); 
cos(Az12)*cos(lat1) + c*cos(zd)*sin(lat1); 

',Z' coord differences by lon1 about Z'-axis 
) - dYp*sin(lon1); 
1) + dYp*cos(lon1); 

ds of P2 
= X1 + dX; 

wring's method 

---- 

e //'); 
///'); 

nellipsoid parameters'); 
  = %18.9f',a); 

   = 1/%16.12f',flat); 

on of P1 
t1*d2r); 

-0 %2d %9.6f (D M S)',M,S); 

6f (D M S)',D,M,S); 

ude P1 =   -0 %2d %9.6f (D M S)',M,S); 

 P1 = %4d %2d %9.6f (D M S)',D,M,S); 

ormal section 

        end 
        iter_2 = iter_2 + 1; 
    end;     

or  % Compute normal section arc length 
 s_new romberg(a,f,lat1,Az12,zd); 

  
   = 
  ds = s_n  
    if abs(ds) 
        break; 
    end 
    c = c - ds; 
    if iter_1 > 15 

     fprintf('Iteration for chord distanc   
        break; 
    end 
    iter_1 = iter_1 + 1; 
end; 
  
% [4] Compute X,Y,Z Cartesi
X1 = nu1*cos(lat1)*cos(lon1)
Y1 = nu1*cos(lat1)*sin(lon1)

1); Z1 = nu1*(1-e2)*sin(lat
  
% [5] Compute X',Y',Z' coord di
%     plane of 
dXp = -c*sin(zd)
dYp =  c*sin(zd)*s

 =  c*sin(zd)*dZp
  
% [6] Rotate X',Y
dX = dXp*cos(lon1

= dXp*sin(londY 
dZ = dZp; 
  
% [7] Compute X,Y,Z coor
X2 
Y2 = Y1 + dY; 
Z2 = Z1 + dZ; 
  
% [8] Compute lat, lon and ellipsoidal height of P2 using Bo
[lat2,lon2,h2] = Cart2Geo(a,flat,X2,Y2,Z2); 
  
%-------------------
% Print result to screen 
%----------------------- 
  

///'); fprintf('\n//////////////////////////////
intf('\n// Normal Section: Direct Casfpr

fprintf('\n//////////////////////////////
fprintf('\n\
fprintf('\na 

\nffprintf('
fprintf('\ne2  = %20.12e',e2); 

%20.12e',e2); fprintf('\nep2 = 
  
% Print lat and l

(la[D,M,S] = DMS
if D == 0 && lat1 < 0 
    fprintf('\n\nLatitude  P1 =   
else     
    fprintf('\n\nLatitude  P1 = %4d %2d %9.
end     
[D,M,S] = DMS(lon1*d2r); 

0 if D == 0 && lon1 < 
    fprintf('\nLongit
else     
    fprintf('\nLongitude
end 
  
% Print azimuth of n
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Azimuth of normal section P1-P2'); 

-P2'); 
,s); 

stance P1-P2 
d distance P1-P2'); 

6f',c); 

f chord at point 1 
ce of chord at P1'); 

tf('\nzd     = %3d %2d %9.6f  (D M S)',D,M,S); 

dinates'); 

 -0 %2d %9.6f (D M S)',M,S); 

\nLatitude  P2 = %4d %2d %9.6f (D M S)',D,M,S); 

on2*d2r); 

(D M S)',D,M,S); 

fprintf('\n\n
[D,M,S] = DMS(Az12*d2r); 
fprintf('\nAz12  = %3d %2d %9.6f  (D M S)',D,M,S); 
  
% Print normal section distance P1-P2 

 section distance P1fprintf('\n\nnormal
fprintf('\ns =  %15.6f'
  
% Print chord di
fprintf('\n\nchor
fprintf('\nc =  %15.
fprintf('\niterations = %4d',iter_1); 
  
% Print zenith distance o
fprintf('\n\nZenith distan

] = DMS(zd*d2r); [D,M,S
infpr

fprintf('\niterations = %4d',iter_2); 
  
  
% Print Coordinate table 

intf('\n\nCartesian coorfpr
fprintf('\n            X               Y               Z'); 
fprintf('\nP1   %15.6f %15.6f %15.6f',X1,Y1,Z1); 
fprintf('\nP2   %15.6f %15.6f %15.6f',X2,Y2,Z2); 
fprintf('\ndX = %15.6f',dX); 
fprintf('\ndY = %15.6f',dY); 
fprintf('\ndZ = %15.6f',dZ); 
  
% Print lat and lon of P2 
[D,M,S] = DMS(lat2*d2r); 

& lat2 < 0 if D == 0 &
    fprintf('\n\nLatitude  P2 =  
else     
    fprintf('\n
end     
[D,M,S] = DMS(l
if D == 0 && lon2 < 0 
    fprintf('\nLongitude P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     

 fprintf('\nLongitude P2 = %4d %2d %9.6f    
end 
  
fprintf('\n\n'); 
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 inverse case for a normal  
lipsoid.  That is, given the latitudes and 
the ellipsoid, compute the azimuth and the 

------------------------------------ 

nces, RMIT University 
VIC 3001, AUSTRALIA. 

          email: rod.deakin@rmit.edu.au 
 21 September 2009 

 2009 

verse case for 
hat is, given the  
llipsoid, compute the  

of the normal section. 

 north 

at P1 

r axis of spheroid 
the local horizon plane measured from east 

 of the chord 

nd u vectors 
ff        - difference between successive value of integral in Romber 

ntegration 
erivatives in Romberg Integration 

 dX,dY,dZ    - Cartesian components of chord between between P1 and P2 
  d2r         - degree to radian conversion factor 57.29577951... 

%  ei,ej,ek    - components of unit vector e in the direction of east in 
%                local horizon system 
%  epsilon     - small angle between azimuths of normal section planes 
%  ep2         - 2nd-eccentricity squared 
%  e2          - 1st-eccentricity squared 
%  f           - f = 1/flat is the flattening of ellipsoid 
%  finish      - integer flag (1 or 0) to test for end of Romberg 
%                Integration 
%  first       - first value in trapezoidal rule in Romberg Integration 
%  flat        - denominator of flattening of ellipsoid 
%  gamma       - angle between unit vectors w and c 
%  g,h         - constants of normal section curve 
%  hi,hj,hk    - components of unit vector h in the local horizon plane and 
%                direction of the plane P1-P2-P4 
%  Integral    - value of integral from trapezoidal rule in Romberg  
%                Integration 
%  inc         - interval width in trapezoidal rule 
%  int         - number of intervals in trapezoidal rule where int = 2^k 
%                and k = 1:m 
%  j,k         - integer counters in Romberg Integration 
%  last        - last value in trapezoidal rule in Romberg Integration 
%  lat1        - latitude of P1 (radians) 
%  lat2        - latitude of P2 (radians) 

MATLAB function nsection_inverse.m 

 
function nsection_inverse 
% 

nction computes the% nsection_inverse:  This fu
section on the reference el% 

% longitudes of two points on 
% arc length of the normal section. 
  
%--------------------------------------
Function:  nsection_inverse() % 

% 
% Usage:     nsection_inverse 
% 
% Author:    R.E.Deakin,  

Geospatial Scie%            School of Mathematical & 
           GPO Box 2476V, MELBOURNE, % 

%  
%            Version  1.0 
%            Version  1.1  16 December 
% 

putes the in% Purpose:   nsection_inverse:  This function com
%  a normal section on the reference ellipsoid.  T

f two points on the e%  latitudes and longitudes o
%  azimuth and the arc length 
% 

Functions required:   % 
%  [D,M,S] = DMS(DecDeg) 
%         
% Variables:  
%  alpha       - angle in the local horizon plane measured from

      - azimuth of normal section P1-P2 %  Az12  
%  Azdash12    - azimuth of normal section plane P2-P1 measured 

       - azimuth of normal section P2-P1 %  Az21 
%  a           - semi-majo

 in %  beta        - angle
%  chord       - chord distance between P1 and P2 

ck    - components of unit vector c in the direction%  ci,cj,
%                P1-P2 

elta       - angle in the meridian plane of P1 between w a%  d
 di% 

%                I
  du,dv,dr    - d%

% 
%
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 m           - maximum power of 2 to determine number of intervals in 
l rule 
vector 

pezoidal rule 
titude) 
unit vector u 

 of unit vector w 

ough P1.  P4 is at 
e rotational axis of the ellipsoid and the normal 
 section P1-P2 is the plane P1-P2-P3.  The normal 
ane P1-P2-P4 and since P3 and P4 are not 

in general) then the two planes create two lines on the 

mal 

tion 
at P1) follows a vector 

ong 

Geospatial Sciences, 

--- 

%  lon1        - longitude of P1 (radians) 
%  lon2        - longitude of P2 (radians) 
% 
%                trapezoida

 norm        - length of % 
%  nu1, nu2    - radii of curvature in prime vertical plane at P1 and P2 
%  ni,nj,nk    - components of unit vector n 
%  pion2       - pi/2 

tor q perpendicular to plane %  qi,qj,qk - components of unit vec
               P1-P2-P4 % 

%  r           - polar coordinate in polar equation of normal section 
tegrals in Romberg Integration %  S           - n,n array of In

 sum         - summation in tra% 
%  s2          - sin-squared(la
 ui,uj,uk    - components of % 

%  wi,wj,wk    - components
%  x,y         - variables in Romberg Integration 
%  X1,Y1,Z1    - Cartesian coordinates of P1 

2 %  X2,Y2,Z2    - Cartesian coordinates of P
%  X3,Y3,Z3    - Cartesian coordinates of P3 
%  X4,Y4,Z4    - Cartesian coordinates of P4 

 zd          - zenith distance of chord % 
% 
% Remarks: 
%  P1 and P2 are two point on the ellipsoid and in general there are two  

intersection of the %  normal section curves between them.  P3 is at the 
 rotational axis of the ellipsoid and the normal thr% 

%  the intersection of th
%  through P2.  The normal

 P2-P1 is the pl%  section
%  coincident (
%  ellipsoid and two lines on the local horizon plane at P1. 

e inverse problem (nor%  The necessary equations for the solution of th
%  sections) on the ellipsoid are described in [1].  The vector 

een the two normal sec%  manipulations to determine the difference betw
izon %  plane azimuths (measuered in the local hor

%  method of calculating azimuth given in [2]. 
te the arc length al%  This function uses Romberg Integration to compu

%  the normal section curve.  This technique of numerical integration is 
in [1]. %  described in detail 

% 
% References: 

 "The Normal Section Curve on an Ellipsoid", %  [1] Deakin, R. E., (2009),
%          Lecture Notes, School of Mathematical and 
%          RMIT University, November 2009. 

us %  [2] Deakin, R. E., (1988), "The Determination of the Instantaneo
%          Position of the NIMBUS-7 CZCS Satellite", Symposium on Remote 

, Queensland, 1988. %          Sensing of the Coastal Zone
% 

------------------------------%-----------------------------------------
 
% Degree to radian conversion factor 
d2r   = 180/pi; 
pion2 = pi/2; 
  
% Set ellipsoid parameters 
a    = 6378137;    % GRS80 
flat = 298.257222101; 
 
% Compute ellipsoid constants 
 f   = 1/flat; 
e2  = f*(2-f); 
ep2 = e2/(1-e2); 
  

P2 on ellipsoid % Set lat and long of P1 and 
lat1 = -10/d2r;    
lon1 =  110/d2r; 
lat2 = -45/d2r;    
lon2 =  155/d2r; 
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ck); 

 P1 

vector for the z-axis of ellipsoid 

of chord at P1 from dot product 
); 

it vector e perpendicular to meridian plane using vector cross 
 u)/cos(lat1).  e is in the direction of east. 

)/cos(lat1); 

ector n in the meridian plane using vector cross  
e.  n is in the direction of north. 

 
% [1] Compute radii of curvature in the prime vertical plane at P1 & P2 
s2  = sin(lat1)^2;  
nu1 = a/sqrt(1-e2*s2); 
s2  = sin(lat2)^2;  
nu2 = a/sqrt(1-e2*s2); 
  
% [2] Compute Cartesian coordinates of points P1, P2, P3 and P4 
% Note that P3 is at the intesection of the normal through P1 and 

4 is at the intersection of the normal% the rotational axis and P
% through P2 and the rotational axis. 
X1 = nu1*cos(lat1)*cos(lon1); 
Y1 = nu1*cos(lat1)*sin(lon1); 
Z1 = nu1*(1-e2)*sin(lat1); 
  
X2 = nu2*cos(lat2)*cos(lon2); 
Y2 = nu2*cos(lat2)*sin(lon2); 
Z2 = nu2*(1-e2)*sin(lat2); 
  
X3 = 0; 
Y3 = 0; 
Z3 = -nu1*e2*sin(lat1); 
  
X4 = 0; 
Y4 = 0; 
Z4 = -nu2*e2*sin(lat2); 
  
% [3] Compute coordinate differences that are the components of the chord 
% P1-P2 
dX = X2 - X1; 
dY = Y2 - Y1; 
dZ = Z2 - Z1; 
  
% [4a] Compute the vector c in the direction of the chord between P1 and P2 
ci = dX; 
cj = dY; 
ck = dZ; 
  
% [4b] Compute the chord distance and the unit vector c 
chord = sqrt(ci*ci + cj*cj + ck*

= ci/chord; ci 
cj = cj/chord; 
ck = ck/chord; 
  
% [5] Compute the unit vector u in the direction of the normal through
ui = X1; 
uj = Y1; 
uk = Z1-Z3; 
norm = sqrt(ui*ui + uj*uj + uk*uk); 
ui = ui/norm; 

 = uj/norm; uj
uk = uk/norm; 
  
% [6] Set unit 
zi = 0; 
zj = 0; 
zk = 1; 
  
% [7] Compute zenith distance 
zd = acos(ui*ci + uj*cj + uk*ck
  
% [8] Compute un
% product e = (z x
ei =  (zj*uk - zk*uj)/cos(lat1); 
ej = -(zi*uk - zk*ui)/cos(lat1); 
ek =  (zi*uj - zj*ui
  
% [9] Compute unit v
% product n = u x 
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 =  (uj*ek - uk*ej); 

tor p perpendicular to normal section P1-P2 using  
 = (u x c)/sin(zd) 

in the 
2 using vector cross product  

rmal section P1-P2-P3 using vector dot product 
acos(ni*gi + nj*gj + nk*gk); 
cos(ei*gi + ej*gj + ek*gk); 

 = 2*pi - alpha; 

= alpha; 

 
ne of P1. 

rm; 
rm; 

d c using vector  

he angle delta between unit vectors w and u using vector  
lta = acos(w . u) 

 
oduct q = (w x c)/sin(gamma) 

- wk*cj)/sin(gamma); 

wj*ci)/sin(gamma); 

unit vector h in the direction of P2 and in the local horizon 
vector cross product h = (q x u)/cos(delta) 

*uk - qk*ui)/cos(delta); 
*uj - qj*ui)/cos(delta); 

ompute azimuth of section P1-P2-P4 using vector dot product 

; 

ni
nj = -(ui*ek - uk*ei); 
nk =  (ui*ej - uj*ei); 
  

ec% [10] Compute unit v
% vector cross product q
pii =  (uj*ck - uk*cj)/sin(zd); 
pj = -(ui*ck - uk*ci)/sin(zd); 
pk =  (ui*cj - uj*ci)/sin(zd); 
  

al horizon plane of P1 and % [11] Compute unit vector g in the loc
on P1-P% direction of the normal secti

% g = p x u 
gi =  (pj*uk - pk*uj); 

= -(pii*uk - pk*ui); gj 
gk =  (pii*uj - pj*ui); 
  
% [12] Compute azimuth of no
alpha = 
beta  = a
  
if beta > pi/2 
    Az12
else 
    Az12 
end 
  
% [13] Compute unit vector w in direction of line P4-P1.  w will lie in the
% meridian pla
wi = X1; 
wj = Y1; 
wk = Z1-Z4; 
norm = sqrt(wi*wi + wj*wj + wk*wk); 
wi = wi/norm; 
wj = wj/no
wk = wk/no
  
% [14] Compute the angle gamma between unit vectors w an
% dot product gamma = acos(w . c) 
gamma = acos(wi*ci + wj*cj + wk*ck); 
  
% [15] Compute t
% dot product de
delta = acos(wi*ui + wj*uj + wk*uk); 
  

pute unit vector q perpendicular to plane P2-P1-P4 using vector % [16] Com
% cross pr
qi =  (wj*ck 
qj = -(wi*ck - wk*ci)/sin(gamma); 
qk =  (wi*cj - 
  
% [17] Compute 

lane using % p
hi =  (qj*uk - qk*uj)/cos(delta); 
hj = -(qi
hk =  (qi
  

18] C% [
alpha = acos(ni*hi + nj*hj + nk*hk); 
beta  = acos(ei*hi + ej*hj + ek*hk)
  
if beta > pi/2 
    Azdash12 = 2*pi - alpha; 
else 
    Azdash12 = alpha; 
end 
  
% [19] Compute angle between normal section planes at P1 
epsilon = abs(Az12-Azdash12); 
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 azimuth P2 to P1 
2) - dY*cos(lon2); 

t2); 

//////////////////////'); 
tion: Inverse Case //'); 
////////////////////'); 
rameters'); 
,a); 

lon of Point 1 

< 0 
titude  P1 =   -0 %2d %9.6f (D M S)',M,S); 

fprintf('\n\nLatitude  P1 = %4d %2d %9.6f (D M S)',D,M,S); 

&& lon1 < 0 
f('\nLongitude P1 =   -0 %2d %9.6f (D M S)',M,S); 

 %9.6f (D M S)',D,M,S); 

 lon of point 2 
lat2*d2r); 

%2d %9.6f (D M S)',M,S); 

2d %9.6f (D M S)',D,M,S); 

'); 

f',X2,Y2,Z2); 
f',X3,Y3,Z3); 
f',X4,Y4,Z4); 

rint chord distance 1-2 
rd distance P1-P2'); 

chord); 

 of chord at point 1 
tf('\n\nZenith distance of chord at P1'); 

,S] = DMS(zd*d2r); 

  
% Compute normal section
numerator   = dX*sin(lon
denominator = dX*sin(lat2)*cos(lon2)  + dY*sin(lat2)*sin(lon2) - dZ*cos(la
Az21 = atan2(numerator,denominator); 
if Az21 < 0 
    Az21 = 2*pi+Az21; 
end 
  

--------------------- %--
% Print result to screen 
%----------------------- 
fprintf('\n////////////
fprintf('\n// Normal Sec
fprintf('\n//////////////
fprintf('\n\nellipsoid pa

intf('\na   = %18.9f'fpr
fprintf('\nf   = 1/%16.12f',flat); 
fprintf('\ne2  = %20.12e',e2); 
fprintf('\nep2 = %20.12e',e2); 
  
% Print lat and 
[D,M,S] = DMS(lat1*d2r); 
if D == 0 && lat1 
    fprintf('\n\nLa

    else 
    

end     
[D,M,S] = DMS(lon1*d2r); 
if D == 0 
    fprint
else     
    fprintf('\nLongitude P1 = %4d %2d
end 
  
% Print lat and

M,S] = DMS([D,
if D == 0 && lat1 < 0 
    fprintf('\n\nLatitude  P2 =   -0 
else     

 fprintf('\n\nLatitude  P2 = %4d %   
end     
[D,M,S] = DMS(lon2*d2r); 
if D == 0 && lon2 < 0 
    fprintf('\nLongitude P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     

.6f (D M S)',D,M,S);     fprintf('\nLongitude P2 = %4d %2d %9
end 
  
% Print Coordinate table 

intf('\n\nCartesian coordinatesfpr
fprintf('\n            X               Y               Z'); 
fprintf('\nP1   %15.6f %15.6f %15.6f',X1,Y1,Z1); 
fprintf('\nP2   %15.6f %15.6f %15.6
fprintf('\nP3   %15.6f %15.6f %15.6
fprintf('\nP4   %15.6f %15.6f %15.6

intf('\ndX = %15.6f',dX); fpr
fprintf('\ndY = %15.6f',dY); 
fprintf('\ndZ = %15.6f',dZ); 
  
% P
fprintf('\n\nCho
fprintf('\nchord   =  %15.6f',
  
% Print zenith distance
fprin

M[D,
fprintf('\nzd      = %3d %2d %9.6f  (D M S)',D,M,S); 
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rint azimuths of normal sections 
2'); 

n P2-P1'); 
; 

tf('\nAz21    = %3d %2d %9.6f  (D M S)',D,M,S); 

rmal section P2-P1 at P1'); 
); 
%2d %9.6f  (D M S)',D,M,S); 

; 

); 

section using ROMBERG INTEGRATION 

 TABLE'); 

ction curve P1-P2 

   x = g*cos(t)+h*sin(t); 
     y = h*cos(t)-g*sin(t); 

 = 2*x*y; 

 

(k-1,j-1)); 

intf('\n\nnormal section distance P1-P2'); 

% P
fprintf('\n\nAzimuth of normal section P1-P
[D,M,S] = DMS(Az12*d2r); 
fprintf('\nAz12    = %3d %2d %9.6f  (D M S)',D,M,S); 
  

Azimuth of normal sectiofprintf('\n\n
[D,M,S] = DMS(Az21*d2r)
fprin
  
fprintf('\n\nAzimuth of no
[D,M,S] = DMS(Azdash12*d2r
fprintf('\nAz''12   = %3d 
     
fprintf('\n\nAngle between normal sections at P1')
[D,M,S] = DMS(epsilon*d2r); 

M S)',D,M,Sfprintf('\nepsilon = %4d %2d %9.6f (D 
  
% [20] Compute arc length of normal 
  
fprintf('\n\nROMBERG INTEGRATION
  
% Compute constants of normal se
ep = sqrt(ep2); 
g  = ep*sin(lat1); 
h  = ep*cos(lat1)*cos(Az12); 
m = 15; 
S = zeros(m,m); 
finish = 0; 
for k = 1:m 
    int = 2^k; 
    inc = (zd-pion2)/int; 

0;     sum = 
    for t = pion2:inc:zd 
     
   
        u = -2*nu1*cos(t); 
        v = 1+x*x; 
        r = u/v; 
        du = 2*nu1*sin(t); 
        dv
        dr = (v*du-u*dv)/(v*v); 

 = sqrt(r*r + dr*dr);         y
        sum = sum+2*y; 
        if t == pion2 
            first = y; 

d         en
        last = y; 

nd         e
    sum = sum-first-last;
    Integral = inc/2*sum; 
    S(k,1) = Integral; 
    fprintf('\n%d %15.6f',k,S(k,1)); 
    for j = 2:k 
        S(k,j) = 1/(4^(j-1)-1)*(4^(j-1)*S(k,j-1)-S
        fprintf(' %15.6f',S(k,j)); 
        diff = abs(S(k,j-1)-S(k,j)); 
        if diff < 1e-6 
            finish = 1; 
            s = S(k,j); 
            break; 
        end 
    end 
    if finish == 1 
        break; 
    end 
end 
  
% Print normal section distance P1-P2 
fpr
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n) and height (h) 
i-major axis (a) 
ian coordinates 
dians. 

---- 

X,Y,Z); 

of Mathematical & Geospatial Sciences, RMIT University 
LBOURNE, VIC 3001, AUSTRALIA. 
@rmit.edu.au 

ion  1.0   6 April  2006 
ion  1.1  20 August 2007 

ired:   

mpute latitude, longitude  
t of a  point related to 
i-major axis (a) and  

ng (flat) given Cartesian coordinates 

 ellipsoid 
 ellipsoid 

cubed 
tricity squared 
tricity squared 

tening of ellipsoid 
minator of flattening f = 1/flat 

 ellipsoid 
dians) 
adians) 

from minor-axis of ellipsoid 
dians) 

soid 
 ellipsoid 

owring's method, see Ref [1]. 
d is also explained in Ref [2]. 

 1976, 'Transformation from spatial to  
al coordinates', Survey Review, Vol. XXIII, 

 181, pp. 323-327. 
 Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian  

 coordinates phi,lambda,h', The 
55-63, June 1999. 
---------------------------- 

fprintf('\ns =  %15.6f',s); 
  
fprintf('\n\n'); 
 
 

MATLAB function Cart2Geo.m 

 
function [lat,lon,h] = Cart2Geo(a,flat,X,Y,Z) 
% 
% [lat,lon,h] = Cart2Geo(a,flat,X,Y,Z) 

unction computes the latitude (lat), longitude (lo%   F
%   of a point related to an ellipsoid defined by sem

ening (flat) given Cartes%   and denominator of flatt
%   X,Y,Z.  Latitude and longitude are returned as ra
  
%----------------------------------------------------------------------

Function:  Cart2Geo() % 
% 
Usage:     [lat,lon,h] = Cart2Geo(a,flat,% 

% 
.Deakin,  % Author:    R.E

%            School 
%            GPO Box 2476V, ME

     email: rod.deakin%       
%            Vers

 Vers%           
% 
% Functions requ
%    radii() 
%         
% Purpose:    
%    Function Cart2geo() will co
%    (both in radians) and heigh

y sem%    an ellipsoid defined b
 flatteni%    denominator of

%    X,Y,Z. 
% 
% Variables: 
%    a       - semi-major axis of

of%    b       - semi-minor axis 
 %    c       - cos(psi)

) %    c3      - cos(psi
%    e2      - 1st eccen

 - 2nd eccen%    ep2    
%    f       - flat

 - deno%    flat   
%    h       - height above
%    lat     - latitude (ra

e (r%    lon     - longitud
%    p       - perpendicular distance 

arametric latitude (ra%    psi     - p
%    rm      - radius of curvature of meridian section of ellip

of prime vertical section of%    rp      - radius of curvature 
%    s       - sin(psi) 

 cubed %    s3      - sin(psi)
% 
% Remarks:    

uses B%    This function 
's metho%    Bowring

% 
% References: 

B.R.,% [1] Bowring, 
ographic%     ge

  No.%   
[2]% 

%     coordinates X,Y,Z to geogrpahical
%     Australian Surveyor, Vol. 44, No. 1, pp. 
%----------------------------------------------
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ening f and ellipsoid constants e2, ep2 and b 

  = f*(2-f); 
2 = e2/(1-e2); 

compute 1st approximation of parametric latitude psi 

ure for the latitude 

ght 

s an angle in decimal degrees and returns 
Seconds 

eg); 

 of a normal section using Romberg 
 technique using the trapezoidal rule 

 function requires ellipsoid parameters 
e of P1 
s) and  

-------------------------------------------- 
omberg 

MIT University 

  
% calculate flatt
f   = 1/flat; 
e2
ep
b   = a*(1-f); 
  
% 
p   = sqrt(X*X + Y*Y); 

i = atan((Z/p)/(1-f)); ps
  
% compute latitude from Bowring's equation 
s   = sin(psi); 
s3  = s*s*s; 
c   = cos(psi); 
  = c*c*c; c3

lat = atan((Z+b*ep2*s3)/(p-a*e2*c3)); 
  
compute radii of curvat% 

[rm,rp] = radii(a,flat,lat); 
  
% compute longitude and hei
lon = atan2(Y,X); 
h   = p/cos(lat) - rp; 
  
 
function [D,M,S] = DMS(DecDeg) 
[D,M,S] = DMS(DecDeg)  This function take% 

%   Degrees, Minutes and 
  

DecDval = abs(
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
if(DecDeg<0) 
  D = -D; 
end 
turn re

 
 
 

erg.m MATLAB function romb

 
function s = romberg(a,f,lat1,Az12,zd) 
% 
% s = romberg(a,f,lat,az,zd) 
% This function cumputes the arc length

ion% Integration, a numerical integrat
% and Richardson Extrapolation.  The
% a (semi-major axis) and f (flattening of ellipsoid), lat1 (latitud
% in radians), Az12 (azimuth of normal section plane P1-P2 in radian
% zd (zenith distance of the chord of the normal section arc P1-P2).  The 
% function returns the arc length s. 
  
%------------------------------
% Function:  r
% 
% Usage:     s = romberg(a,f,lat1,Az12,zd); 
% 

uthor:    R.E.Deakin,  % A
%            School of Mathematical & Geospatial Sciences, R
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 

 September 2009 %            Version  1.0  24
% 
% Purpose:   This function cumputes the arc length of a normal section  
%  using Romberg Integration, a numerical integration technique using the  
%  trapezoidal rule and Richardson Extrapolation.  The function requires  
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ellipsoid parameters a,f and lat1 (latitude of P1 in radians), Az12  
nith  

the chord of the normal section arc P1-P2). 

ed:   

axis of spheroid 
ce between P1 and P2 
adian conversion factor 57.29577951... 

red 
-eccentricity squared 
= 1/flat is the flattening of ellipsoid 
stants of normal section curve 
titude of P1 (radians) 

ime vertical plane at P1 

hs 
P2 

itude) 
 chord 

References: 
he Normal Section Curve on an Ellipsoid", 

er 2009. 

------------------------------------------------------- 

ersion factor 

ellipsoid constants 
(2-f); 

2 = e2/(1-e2); 

Compute radius of curvature in the prime vertical plane at P1 

------------------------ 
sing ROMBERG INTEGRATION 

---------------------------------- 

ervals and the increment 

dal Rule 

%  
%  (azimuth of normal section plane P1-P2 in radians) and zd (ze
%  distance of 
% 
% Functions requir
%         
% Variables:  
%  Az12     - azimuth of normal section P1-P2 
%  a        - semi-major 
%  chord    - chord distan

d2r      - degree to r%  
%  e2       - eccentricity of ellipsoid squa
%  eps      - 2nd
%  f        - f 
%  g,h      - con

la%  lat1     - 
%  nu1      - radius of curvature in pr
%  pion2    - pi/2 
%  S        - array of normal section arc lengt

rmal section P1-%  s        - arc length of no
s2       - sin-squared(lat%  

%  zd       - zenith distance of
%   
% Remarks: 
% 
% 
%  [1] Deakin, R. E., (2009), "T
%          Lecture Notes, School of Mathematical and Geospatial Sciences, 
%          RMIT University, Novemb
% 
%-------------------
  
% Degree to radian conv
d2r   = 180/pi; 
pion2 = pi/2; 
  

pute % Com
e2  = f*
ep
  
% 
s2  = sin(lat1)^2;  
nu1 = a/sqrt(1-e2*s2); 
  
%---------------------------------------
Compute arc length of normal section u% 

%-----------------------------
  
% fprintf('\n\nROMBERG INTEGRATION TABLE'); 
  
% Compute constants of normal section curve P1-P2 
ep = sqrt(ep2); 
g  = ep*sin(lat1); 
h  = ep*cos(lat1)*cos(Az12); 
  
% Set array of arc lengths 
n = 15; 
= zeros(n,n); S 

finish = 0; 
r k = 1:15 fo

    % set the number of int
    int = 2^k; 
    inc = (zd-pion2)/int; 
    sum = 0; 
    % evaluate the integral using the Trapezoi
  for t = pion2:inc:zd   

        x = g*cos(t)+h*sin(t); 
        y = h*cos(t)-g*sin(t); 
        u = -2*nu1*cos(t); 
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(v*v); 
r*dr); 

k-1,j-1)); 

 finish = 1; 
s = S(k,j); 

         break; 

 end 

        v = 1+x*x; 
        r = u/v; 
        du = 2*nu1*sin(t); 
        dv = 2*x*y; 
        dr = (v*du-u*dv)/

 sqrt(r*r + d        y =
        sum = sum+2*y; 
        if t == pion2 
            first = y; 
        end 
        last = y; 
    end     
    sum = sum-first-last; 
    Integral = inc/2*sum; 
    S(k,1) = Integral; 
%    fprintf('\n%d %15.6f',k,S(k,1)); 
    % Use Richardson extrapolation 
    for j = 2:k 
        S(k,j) = 1/(4^(j-1)-1)*(4^(j-1)*S(k,j-1)-S(
%        fprintf(' %15.6f',S(k,j)); 
        diff = abs(S(k,j-1)-S(k,j)); 
        if diff < 1e-6 
           
            
   
        end 
    end 
    if finish == 1 
        break; 
   
end 
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OMBERG INTEGRATION 

omberg integration (Romberg 1955) is a numerical technique for evaluating a definite 

analy tment of the technique and a study of the 

(1984 rmula that is at 

B function that demonstrates 

Romberg integration is a method  integral 

It is b

APPENDIX 1:  R

R

integral and discussions of the technique can be found in most textbooks on numerical 

sis; e.g. Williams (1972).  A concise trea

historical development of methods of integration (quadrature) can be found in Dutka 

).  A development of Romberg's method – and the extrapolation fo

the heart of it – is given below and is followed by a MATLA

the use of the technique. 

 for estimating the numerical value of the definite

 ( )
b

a

I f x dx=  (54) 

ased on the 

∫

trapezoidal rule – the simplest of the Newton-Cotes integration formula 

for equally spaced data on the interval a,b 

 ( ) ( 0 1
2

h
I f x dx f f= = + +∫

b

)2 1
2 2

n n
f f f E−+ + + +"  (55) 

2
a

 

f x( )

ff
0

n

x

f
f

f
3

2
1

a bh  

here 

n is the number of intervals of width h, 

 

w

 

b a
h

n
−

=  is the common interval width or spacing, 

  are values of the function evaluated at 
0 1 2
, , ,f f f … , , 2 ,x a a h a h⎡ ⎤= + +⎢ ⎥⎣ ⎦… , 

 E is the error term 

When the function ( )f x  has continuous derivatives the error term E can be expressed as a 

convergent power series and we may write 

 ( ) ( ) 2
0 1 2 1

1

2 2 2
2

b
j

n n j
ja

h
I f x dx f f f f f E T a h

∞

−
=

= = + + + + + + = +∑∫ "  (56) 

where  are coefficients. 
j

a
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s in h a technique known as Richardson As the error term E is a convergent power serie
1

 

extrapolation  may be employed to improve the accuracy of the result. 

Richardson extrapolation can be explained as follows. 

Let the value of n be a power of 2; say 2k  i.e., the number of intervals 2, 4,8,16, ,2kn = …

Denote an evaluation of the integral I given by equation (56) as 

 2 2 4 6
,1

j
k

S T a h T a h a h a h
∞

= + = + + + +∑ " (57)

 

1 2 3
1

j
j=

If the interval width is halved, then 

2

2 4 6
2 34 6

1

2
a h a h+ + +" (58)  

1,1 1 2
1

1 1
2 2 2

j

k j
j

h
S T a T a h

∞

+
=

⎛ ⎞⎟⎜ ⎟= + = +⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑

uation (58) by 4 and then subtracting equation 

(57) will eliminate the first term of the error series 

The first term of the error series can be eliminated by taking suitable combinations of 

equations (57) and (58); i.e., multiplying eq

4 6
4 6

1,1 ,1 2 34 6

2
2

2
2

4 4
4 4

2 2

4
3

2

k k

j
j

j j
j

h h
S S T T a h a h

h
T a h

+

∞

=

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟− = − + − + − +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
⎛ ⎞⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑

"
  

and 

 
2

1,1 ,1

2
2

4 4
1

3 3 2

j
k k j

j
j

S S a h
T

∞
+

=

⎛− ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑

⎞
−  (59) 

st term on the right-hand-side of equation (59) will be designated 

 

The fir

1,1 ,1
,2

4
k k

S S+ −

3k
S =  

and the leading error term is now of order .   4h

                                     
1 A technique named after Lewis Fry Richardson (1881–1953) a British applied mathematician, physicist, 

eteorologist, psychologist and pacifist who developed the numerical methods used in weather f

and also applied his mathematical techniques to the analysis of the causes and prevention of wars.  He was 

on actals.  Richardson extrapolation is also known as Richardson's deferred 

approach to the limit. 

m orecasting 

also a pi eer in the study of fr
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; and 

r to re

Successive halvings of the interval will give a sequence of values 
1,1 2,1 3,1 ,1

, , , ,
k

S S S S…  and 

each successive pair ( ) ( ), , , ,S S S S …  can be combined to give valu
1,1 2,1 2,1 3,1

es 
2,2 3,2

, ,S S

move the leading error term 

…

this next sequence can be combined in a similar manne

of order 4h ; and so on. 

By using the formula 

( )1
, , 1 1, 11

1,2,3,4,1
4

2,3,4,5,4 1
j

k j k j k jj

k
S S S

j
−

− − −−

=
= −

=−

…
…

 (60)  

the process of Richardson extrapolation leads to a triangular sequence of columns with 

error terms of increasing order. 

 j

 

 

n k  
1 2 3 4  

2  1 1,1
S      

2,1
S  

2,2
S  4  2    

3,1
S  

3,2
S  

3,3
S  16  3   

4,1
S  

4,2
S  

4,3
S  

4,4
S  32  4  

#   #  #  #  #  #  %  
error term  2h  4h  6h  8h  

 

The entries volving , the entries 
,2k

S

 column

 in the second column have eliminated the terms in

in the third  have eliminated the terms involving , etc, and as the interval 

2h
4h

2k

b a
h

−
=  the error term of the approximation  is of the order 

,k j
S

2

2

j

k ⎟⎜ ⎟⎜⎝ ⎠
 with each 

ccessive value in a particular row converging more ra idly to the true value of the 

Testing between particular values will determine when the process has converged to a 

suitable result. 

 

b a⎛ ⎞− ⎟⎜ ⎟⎜

su p

integral. 
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mberg Integration f

MATLAB FUNCTION romberg_test.m 

This function uses Ro or the calculation of the integral ( )sec x dx∫  

This inte al has the kngr own result ( )sec ln tan
2 4
x

x dx
π⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= +⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

∫  

MATLAB function romberg_test.m 

unction romberg_test 
% 

 

 
ed that shows the convergence to the true 

% value of the integral. 
 
%-------------------------------------------------------------------------- 
% Function:  romberg_test 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  09 December 2009 
% 
% Purpose:   This function computes the numerical value of the integral of  
%  sec(x) which is known to equal ln[tan(x/2+pi/4)]. 
%  For x = 45 degrees the integral sec(x) = 0.881373587. 
%  An integration table is produced that shows the convergence to the true 
%  value of the integral. 
% 
% Variables:  
%  diff     - difference between successive approximations of the integral 
  d2r      - degree to radian conversion factor 57.29577951... 
  first    - first value of f(x) 

%  last     - last value of f(x) 
%  m      
%  n      
%  S        - array of integral values 

es: 
%  Williams, P. W., (1972), "Numerical Computation", Nelson, London. 

 

% Degree to radian conversion factor 
2r   = 180/pi; 
  
fprintf('\n\nRomberg Integration Table for the integral of sec(x) for x = 45 degrees'); 
  
% Set array of values S(k,j) 
m = 15; 
S = zeros(m,m); 
finish = 0; 
for k = 1:m 
    % set the number of intervals and the increment 

 
f

% This function computes the numerical value of the integral of sec(x)
% which is known to equal ln[tan(x/2+pi/4)]. 
% For x = 45 degrees the integral sec(x) = 0.881373587020.
% An integration table is produc

 

%
%
%  fx       - value of f(x) 
%  h        - interval width 
%  Integral - numerical value of integral from trapezoidal rule 
%  k,j      - integer counters 

  - maximum number of intervals 
  - number of intervals 

%  sum      - sum of function values 
%  x        - the variable 
%   
% Referenc

% 
%--------------------------------------------------------------------------
  

d
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    sum = 0; 

        fx = 1/cos(x/d2r); 

            first = fx; 
        end 

  sum = sum-first-last; 
sum; 

)-S(k,j)); 

cal value of the integral of sec(x) 
an(x/2+pi/4)]. 

the true 

r the integral of sec(x) for x = 45 degrees 
77 

7023 
81373587023  0.881373587020  0.881373587020 

    n = 2^k; 
    h = 45/n; 

    % evaluate the integral using the Trapezoidal Rule 
    for x = 0:h:45 

        sum = sum+2*fx; 
        if x == 0 

        last = fx; 
    end     
  
    Integral = h/d2r/2*

 S(k,1) = Integral;    
    fprintf('\n%d %15.12f',k,S(k,1)); 
    % Use Richardson extrapolation 
    for j = 2:k 
        S(k,j) = 1/(4^(j-1)-1)*(4^(j-1)*S(k,j-1)-S(k-1,j-1)); 

,S(k,j));         fprintf(' %15.12f'
      diff = abs(S(k,j-1  
        if diff < 1e-12 
            finish = 1; 
            break; 
        end 
    end 
    if finish == 1 
        break; 
    end 
end 
fprintf('\n\n'); 
 
 
 

MATLAB Command Window 

 
 
>> help romberg_test 
  

numeri  This function cumputes the 
  which is known to equal ln[t
  For x = 45 degrees the integral sec(x) = 0.881373587020. 

ed that shows the convergence to   An integration table is produc
  value of the integral. 
 
 
>> romberg_test 
 
 

rg Integration Table foRombe
1  0.8990841475
2  0.885885914440  0.881486503395 

0.882507477613  0.881381332003  0.881374320577 3  
4  0.881657432521  0.881374084157  0.881373600967  0.881373589544 

0.881444571861  0.881373618307  0.881373587251  0.881373587033  0.881373585  
6  0.881391334699  0.881373588978  0.8
 
>> 
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 the function Romberg_test.m that is evaluating the integral  

Integration Table and the elements are obtained as follows: 

 intervals (or strips) of width h where 

The output from

( )
45x

dx
= D

0

sec
x

I x
=

= ∫
D

  

is shown in the Romberg 

 

•  For 1k = , there are n = 2 2k =

45 0b a− −D D

22.50h = = =  and the i
2n

D ntegral ( )0 1
2

2
h

I f f+ +�
2
f .  The function 

1( ) secf x x= =  evaluated at 0 ,22.5 , 45x = D D D  gives 
cosx

0

1

2

1

1.082392200

1.414213562

f

f

=
=
=

 

f

 

and 

( )( )1,1
S I=

22.5
1 2 1.082392200 1.414213562 0.899084148

2 180
π⎛ ⎞⎟⎜ ⎟= + + =⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

, there are  intervals (or strips) of width h where 

 

 

•  For 2k = 2 4kn = =

45 0
11.25D

4
b a

h
n
− −

= = =
D D

 and the integral ( )0 1 3
2 2

2
h

I f f f+ + +�
4
f .  The function 

( ) 1
secf x x= =  evaluated at 0 ,11.25x = D

cosx
,22.5 ,33.75 ,45D D D D  gives 

0

1

2

4

1

1.019591158

1.082392200

1.414213562

f

f

f

f

=
=
=

=

  

3
1.202689774f =

and 

( ) ( ) ( )( )2,1

11.25 π⎛ ⎞⎟⎜ 1 2 1.019 2 1.082 2 1.202 1.414 0.885885914
2 180

⎟= = + + + + =⎜ ⎟⎜ ⎟⎜⎝ ⎠
… … … …  

he element  is obtained from equation (60) 

 S I

2,2
ST

( ) ( )1
2,2 2,1 1,11

1 1
4 4 0.885885914 0.899084148 0.881486503

34 1
S S S= − = × − =

−
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 the 

integral 

•  For 3k = , there are 2 8kn = =  intervals (or strips) of width 5.625h = D  and

( )0 1 3
2 2f f +� "

7 8
2

2
I f f f+ + + + .  The function

h
 ( ) 1

sec
co

x= =
s

f x
x

 evaluated 

at D  gives 

 

 

0 ,5.625 ,11.25 , 5x = D D D, 39.375 ,4D …

0

1

7

8

1

1.293643

1.414213562

f

f

f

=

=
=

#
 

2

1.004838572

1.019591158

567

f

f

=

=

and 

( ) ( )( )3,1

5.625
1 2 1.004 2 1.293 1.414 0.882507478

2 180
S I

π⎛ ⎞⎟⎜ ⎟= = + + + + =⎜ ⎟⎜ ⎟⎜⎝ ⎠
… " … …  

The elements  are obtained from equation (60) 
3,2 3,3

 and S S

( ) ( )

( ) ( )

1
3,2 3,1 2,11

2
3,3

 

3,22
4 16 0.881381333 0.881486503 0.

54 1
S S × − =

−

s of k 

2,2

1 1
4 4 0.882507478 0.885885914 0.881381333

34 1
1 1

8813374322
1

S S S

S

= − = × − =
−

= − =
 

And so on for increasing value

Testing between successive values 
, 1 ,

 and 
k j k j

S S−  can be used to determine when the 

iterative procedure i

 

s terminated. 
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ABSTRACT 

These notes provide a detailed derivation of the equation for the curve of alignment on an 

ellipsoid.  Using this equation and knowing the terminal points of the curve, a technique is 

developed for computing the location of points along the curve.  A MATLAB function is 

provided that demonstrates the algorithm developed. 

 

INTRODUCTION 

In geodesy, the curve of alignment between  and  on the ellipsoid is the locus of a 

point P on the surface that moves so that a normal section plane at P contains the 

terminal points  and .   
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Figure 1:  Curve of alignment on ellipsoid 
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Figure 1 shows P on the curve of alignment between  and .  The normal to the 

ellipsoid at P intersects the z-axis of the ellipsoid at  and is contained in the plane 

.  This normal section plane cuts the ellipsoid along the normal section curve 

.  As P moves from  to  – maintaining the condition that a normal section 

plane contains  and  – it traces out the curve of alignment.  This is a curve on the 

surface having both curvature and torsion, i.e., it twists across the surface between  and 

.  Note that in Figure 1, the normal at  intersects the z-axis at  and is not 

contained in the plane , unless P is at . 
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The curve of alignment can also be described physically in the following way.  Imagine a 

theodolite, in adjustment, that is setup on the surface of the ellipsoid somewhere between 

 and , and whose vertical axis is coincident with the ellipsoid normal.  The theodolite 

is pointed to the backsight  and the horizontal circle is clamped; then the telescope is 

rotated in the vertical plane and pointed towards the forsight .  Unless there is some 

fluke of positioning, it is unlikely that the theodolite cross-hairs will bisect the target .  

So the theodolite is repositioned by moving appropriate amounts perpendicular to the line 

until the vertical plane of the theodolite at P contains both the backsight  and the 

forsight .  A peg is place on the surface at this point.  This process of “jiggling in” or 

“middling in” between  and  is repeated a short distance further along the line and 

another peg placed.  After the last peg has been placed the curve of alignment is now 

defined by the pegged line on the surface. 

1
P

2
P

2
P

1
P

2
P

2
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The curve of alignment follows a path very similar to that of the geodesic and it is slightly 

longer; although the difference is practicably negligible at distances less than 5,000 km.  

This will be demonstrated below using equations developed by Clarke (1880) and Bowring 

(1972). 

The equation for the curve developed below is similar to that derived by Thomas (1952) 

although the method of development is different; and it is not in a form suitable for 

computing the distance or azimuth of the curve.  But, as it contains functions of both the 

latitude and longitude of a point on the curve, it is suitable for computing the latitude of a 

point (by iteration) given a certain longitude.  Alternatively, by choosing suitable 

functions of given latitude, the longitude of a point on the curve can be computed directly 

(by solving a trigonometric equation). 
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EQUATION OF CURVE OF ALIGNMENT 
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Figure 2:  Normal section plane containing  and  
1

P
2

P

Figure 2 shows a normal section plane of P on an ellipsoid that passes through  and .  

The semi-axes of the ellipsoid are a and b (  and the first-eccentricity squared , 

second-eccentricity squared  and the flattening f of the ellipsoid are defined by 

1
P

2
P

)a b> 2e
2e ′

 

( )
( )

( )

2 2
2

2

2 2 2
2

2 2

2

2

11

a b
e f f

a
f fa b e

e
b ef

a b
f

a

−
= = −

−−′ = = =
−−

−
=

2
 (1) 

Parallels of latitude φ  and meridians of longitude λ  have their respective reference planes; 

the equator and the Greenwich meridian, and Longitudes are measured 0  to  (east 

positive, west negative) from the Greenwich meridian and latitudes are measured  to 

 (north positive, south negative) from the equator.  The x,y,z geocentric Cartesian 

coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the 

minor axis (axis of revolution).  The xOz plane is the Greenwich meridian plane (the origin 

of longitudes) and the xOy plane is the equatorial plane.  The positive x-axis passes 

through the intersection of the Greenwich meridian and the equator, the positive y-axis is 

D 180± D

0D

90± D
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advanced  east along the equator and the positive z-axis passes through the north pole 

of the ellipsoid.   

90D

PH=

The normal section plane in Figure 2 is defined by points ,  and  that are ,  and 

H respectively where H is at the intersection of the normal through P and the z-axis.  

Cartesian coordinates of  and  are computed from the following equations 

1
P

2
P

  (2) 

( )2

cos cos

cos sin

1 sin

x

y

z e

ν φ λ
ν φ λ

ν φ

=
=

= −

where ν  is the radius of curvature in the prime vertical plane and 

 
2 21 sin

a

e
ν

φ
=

−
 (3) 

The distance  and the Cartesian coordinates of point  are 2 sinOH eν= φ

 
3

3
2

3

0

0

sin

x

y

z eν φ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (4) 

The General equation of a plane may be written as 

  (5) 0Ax By Cz D+ + + =

And the equation of the plane passing through points ,  and  is given in the form of 

a 3rd-order determinant 

 
1 1 1

2 1 2 1 2 1

3 2 3 2 3 2

0

x x y y z z

x x y y z z

x x y y z z

− − −
− − − =
− − −

 (6) 

or expanded into 2nd-order determinants 

 ( ) ( ) ( )2 1

2

y

y
2 1 2 1 2 1 2 1 2 1

1 1 1
3 3 2 3 2 3 2 3 2 3 2

0
y z z x x z z x x y y

x x y y z z
y z z x x z z x x y y

− − − − − −
− − − + − =

− − − − − −

}

 (7) 

Expanding the determinants in equation (7) gives 

  (8) 

( ) ( )( ) ( )( ){ }
( ) ( )( ) ( )( ){ }
( ) ( )( ) ( )( ){

1 2 1 3 2 2 1 3 2

1 2 1 3 2 2 1 3 2

1 2 1 3 2 2 1 3 2
0

x x y y z z z z y y

y y x x z z z z x x

z z x x y y y y x x

− − − − − −

− − − − − − −

+ − − − − − − =
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Now from equation (4)  and equation 
3 3

0x y= = (8) becomes 

  (9) 

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1 2 1 3 2 1 2 1 2

1 2 1 3 2 1 2 1 2

1 2 1 2 1 2 1 2
0

x x y y z z x x z z y

y y x x z z y y z z x

z z x x y z z y y x

− − − − − − −

− − − − + − − −

+ − − − + − − − =

Expanding and simplifying equation (9) gives 

  (10) 

( ) ( ) ( )
( ) ( ) ( )

3 2 1 1 2 2 1 3 2 1 1 2

3 1 2 2 1 1 2 1 2 2 1
0

xz y y x y z y z z x y x y

yz x x y x z x z z x y x y

− + − + −

+ − + − + − =
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λ

φ

λ

λ

φ =

Now from equations (2) and (4) , ,  and 

, and substituting these into equation 

cos cosx ν φ= cos siny ν φ= λ ( )21 sinz eν φ= −
2

3
sinz eν= − (10) gives 

  
( ) ( ){ } ( )

( ) ( )
2

2 1 2 1 2 1 1 2

2 1 1 2 2 1 1 2

sin cos sin cos

sin tan 0

e x x y y y z y z

x z x z x y x y

ν λ λ φ

λ φ

− − − − −

+ − − − =

that is equivalent to 

  
( ) ( ) ( ){ } ( )( )
( )( ) ( )( )

2 2 2 2
2 1 2 1 1 2 2 1

2 2
1 2 2 1 1 2 2 1

1 cos sin sin 1 cos

1 sin 1 tan 0

e e y y e x x e y z y z

e x z x z e x y x y

ν λ λ φ

λ φ

− − − − − − −

− − − − − − =

or, following Thomas (1952, p. 67, eq. 183); the equation of the curve of alignment is 

  (11) ( ){ } ( )2 21 cos sin sin cos sin 1 tan 0e C H U V W eν λ λ φ λ λ− − − − − −

where 

  (12) 

( ) ( )( )
( ) ( )( )

2 2
2 1 1 2 2 1 1 2 2 1

2 2
2 1 2 1 1 2

1

1

C e y y U e y z y z W x y x y

H e x x V e x z x z

= − = − − = −

= − = − −

Equation (11) is not suitable for computing the distance along a curve of alignment, nor is 

it suitable for computing the azimuth of the curve, but by certain re-arrangements it is 

possible to solve (iteratively) for the latitude of a point on the curve given a longitude 

somewhere between the longitudes of the terminal points of the curve.  Or alternatively, 

solve (a trigonometric equation) for the longitude of a point given a latitude somewhere 

between the latitudes of the terminal points. 



SOLVING FOR THE LATITUDE 

Equation (11) can be re-arranged as 
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=  (13) sin tan 0A B Dν φ φ− −

where A and D are functions of longitude alone and B is a constant for the curve, and 

  (14) ( )( ) ( )2 21 cos sin ; 1 ; cos siA e C H B W e D U Vλ λ λ= − − = − = + nλ

C, H, U, V and W are constants for the particular curve and are given by equation (12).  

 is a function of the latitude of P on the curve and is given by equation ν (3). 

The latitude φ  can be evaluated using Newton-Raphson iteration for the real roots of the 

equation  given in the form of an iterative equation ( ) = 0f φ

 ( ) ( )
( )( )
( )( )1

n

n n

n

f

f

φ
φ φ

φ
+

= −
′

 (15) 

where n denotes the nth iteration and  is given by equation ( )f φ (13) as 

  (16) ( ) sin tanf A Bφ ν φ φ= − D−

and the derivative ( ) ( ){d
f

d
φ

φ
′ = }f φ  is given by 

 ( ) 2sin cos sec
d

f A A B
d
ν

φ φ ν φ
φ

′ = + − φ  (17) 

where, from equation (3) 

 
3

2

2
sin cos

d
e

d a

ν ν
φ

φ
= φ

)

 (18) 

An initial value of  (  for ) can be taken as the latitude of  and the functions 

 and 

( )1φ φ 1n =
1

P

( )( 1
f φ ( )( )1

f φ′  evaluated from equations (16) and (17) using .   (  for ) 

can now be computed from equation 

1
φ ( )2φ φ 2n =

( )1n
φ

+

(15) and this process repeated to obtain values 

.  This iterative process can be concluded when the difference between  and 

 reaches an acceptably small value. 

( ) ( )3 4
,φ φ

( )n
φ

,…

 



SOLVING FOR THE LONGITUDE 

Equation (11) can also be re-arranged as 
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S  (19) cos sinP Qλ λ− =

where P, Q and S are functions of latitude alone and 

  (20) ( ) ( ) ( )2 21 sin ; 1 sin ; 1 tanP C e U Q H e V S W eν φ ν φ= − − = − + = − 2 φ

C, H, U, V and W are constants for the particular curve and are given by equation (12).  

 is a function of the latitude of P on the curve and is given by equation ν (3). 

The longitude can be evaluated using Newton-Raphson iteration where 

 ( ) ( )
( )( )
( )( )1

n

n n

n

f

f

λ
λ λ

λ
+

= −
′

 (21) 

and 

  (22) 
( )
( )

cos sin

sin cos

f P Q

f P Q

λ λ λ

λ λ

= −
′ = − −

S

λ

−

An initial value of  (  for ) can be taken as the longitude of . ( )1λ λ 1n =
1

P

Alternatively, the longitude can be evaluated by a trigonometric equation derived as 

follows.  Equation (19) can be expressed as a trigonometric addition of the form 

  (23) 
( )cos

cos cos sin sin

S R

R R

λ θ
λ θ λ

= −
= + θ

θ

Now, equating the coefficients of  and  in equations cosλ sinλ (19) and (23) gives 

  (24) cos ; sinP R Q Rθ= = −

and using these relationships 

 2 2 ; tan
Q

R P Q
P

θ
−

= + =  (25) 

Substituting these results into equation (23) gives 

 
2 2

arccos arctan
S

PP Q
λ

⎧ ⎫⎪ ⎪ ⎧ ⎫⎪−⎪ ⎪⎪ ⎪ ⎪= +⎨ ⎬ ⎨⎪ ⎪ ⎪+⎪ ⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭

Q⎪⎪⎬⎪⎪
 (26) 

 



DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND CURVE OF ALIGNMENT 

There are five curves of interest in geodesy; the geodesic, the normal section, the great 

elliptic arc the loxodrome and the curve of alignment.   

The geodesic between  and  on an ellipsoid is the unique curve on the surface defining 

the shortest distance; all other curves will be longer in length.  The normal section curve 

 is a plane curve created by the intersection of the normal section plane containing the 

normal at  and also  with the ellipsoid surface.  And as we have shown (Deakin 2009) 

there is the other normal section curve .  The curve of alignment is the locus of all 

points P such that the normal section plane at P also contains the points  and .  The 

curve of alignment is very close to a geodesic.  The great elliptic arc is the plane curve 

created by intersecting the plane containing ,  and the centre O with the surface of 

the ellipsoid and the loxodrome is the curve on the surface that cuts each meridian 

between P  and  at a constant angle. 

1
P

2
P

2
P

1 2
PP

1
P

1

2 1
P P

1
P

2
P

1
P

2
P

2
P

Approximate equations for the difference in length between the geodesic, the normal 

section curve and the curve of alignment were developed by Clarke (1880, p. 133) and 

Bowring (1972, p. 283) developed an approximate equation for the difference between the 

geodesic and the great elliptic arc.  Following Bowring (1972), let 

  

 geodesic length

 normal section length

 great elliptic length

 curve of alignment length

s

L

D

S

=

=
=
=

then 

 

44
4 2 2

1 12 12

24
2 2 2

1 1 12

44
4 2 2

1 12 12

cos sin cos
90

sin cos sin
24

cos sin cos
360

e s
L s s

R

e s
D s s

R

e s
S s s

R

φ α α

φ φ α

φ α α

⎛ ⎞⎟⎜ ⎟− = +⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟− = +⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟− = +⎜ ⎟⎜ ⎟⎜⎝ ⎠

"

"

"

 (27) 

where R can be taken as the radius of curvature in the prime vertical at .  Now for a 

given value of s, S  will be a maximum if  (  on the equator) and  in 

which case 

1
P

s−
1

0φ = D
1

P
12

45α = D

4 2sinφ α 2
1 12 12

1
cos cos

4
α = , thus 
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R

⎛ ⎞⎟⎜ ⎟− < ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (28) 

For the GRS80 ellipsoid where ( )21 298.257222101, 2f e= = f f− , and for 2000000 ms =  

(2,000 km) and , equation 6371000 mR = (28) gives . 0.001 mS s− <

 

MATLAB FUNCTIONS 

Two MATLAB functions are shown below; they are: curve_of_alignment_lat.m and 

curve_of_alignment_lon.m  Assuming that the terminal points of the curve are known, 

the first function computes the latitude of a point on the curve given a longitude and the 

second function computes the longitude of a point given the latitude.   

Output from the two functions is shown below for points on a curve of alignment between 

the terminal points of the straight-line section of the Victorian–New South Wales border.  

This straight-line section of the border, between Murray Spring and Wauka 1978, is known 

as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border 

line in 1870-71.  Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast 

at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of 

the Murray River that is closest to Cape Howe.  The straight line is a normal section curve 

on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the 

normal to the ellipsoid at Murray Spring.  The GDA94 coordinates of Murray Spring and 

Wauka 1978 are: 

  
Murray Spring: 37 47 49.2232 148 11 48.3333

Wauka 1978: 37 30 18.0674 149 58 32.9932

φ λ

φ λ

′ ′′ ′−
′ ′′ ′−

D D

D D

′′

′′

The normal section azimuth and distance are: 

  116 58 14.173757 176495.243760 m′ ′′D

The geodesic azimuth and distance are: 

  116 58 14.219146 176495.243758 m′ ′′D

Figure 3 shows a schematic view of the Black-Allan line (normal section) and the geodesic 

and curve of alignment.  The relationships between these two curves and the normal 

section have been computed at seven locations along the line (A, B, C, etc.) where 

meridians of longitude at 0 1  intervals cut the line.  The relationships are shown in 

Table 1. 

5′D
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BLACK-ALLAN LINE:  VICTORIA/NSW BORDER

The Black-Allan Line is a normal section curve
on the reference ellipsoid between P1 (Murray 
Spring) and P2 (Wauka 1978).  This curve is the 
intersection of the normal section plane and the 
ellipsoid, and the normal section contains P1,
the normal to the ellipsoid at P1, and P2.

The GDA94 coordinates of Murray Spring and 
Wauka 1978 are:
Murray Spring:  -37°47’49.2232”   148°11’48.3333”
Wauka 1978

φ λ
:     -37°30’18.0674”   149°58’32.9932”

The normal section azimuth and distance are: 
116°58’14.173757” 176495.243760 m.

φ λ

149°45’

149°30’

149°15’

149°00’

148°45’

148°30’

148°15’

Geodesic

Curve of
Alignment

Normal Section

The geodesic and the Curve of Alignment are shown plotted at an
exaggerated scale with respect to the Border Line (normal section).
At longitude 149°00’E. the Geodesic is 0.016 m south of the Border
Line and the Curve of Alignment is 0.015 m south.  
At longitude 149°30’E. the Geodesic is 0.015 m south of the Border
Line and the Curve of Alignment is 0.019 m south.  

Figure 3 

 

BLACK-ALLAN LINE:  VICTORIA/NSW BORDER 
 

GDA94 Ellipsoid values NAME 
LATITUDE LONGITUDE dφ ρ dm = ρ×dφ 

Murray 
Spring -36°47΄49.223200˝ 148°11΄48.333300˝    

A 
-36°49΄07.598047˝ N 
-36°49΄07.598090˝ G 
-36°49΄07.598051˝ CoA 

148°15΄00.000000˝ 
 
-00΄00.000043˝ 
-00΄00.000004˝ 

6358356.102 
 
   -0.0013 
   -0.0001 

B 
-36°55΄13.876510˝ N 
-36°55΄13.876745˝ G 
-36°55΄13.876614˝ CoA 

148°30΄00.000000˝ 
 
-00΄00.000235˝ 
-00΄00.000104˝ 

6358465.209 
 
   -0.0072 
. .-0.0032 

C 
-37°01΄17.289080˝ N 
-37°01΄17.289478˝ G 
-37°01΄17.289366˝ CoA 

148°45΄00.000000˝ 
 
-00΄00.000398˝ 
-00΄00.000286˝ 

6358573.577 
 
   -0.0123 
   -0.0088 

D 
-37°07΄17.845554˝ N 
-37°07΄17.846060˝ G 
-37°07΄17.846030˝ CoA 

149°00΄00.000000˝ 
 
-00΄00.000506˝ 
-00΄00.000476˝ 

6358681.204 
 
   -0.0156 
   -0.0147 

E 
-37°13΄15.555723˝ N 
-37°13΄15.556262˝ G 
-37°13΄15.556326˝ CoA 

149°15΄00.000000˝ 
 
-00΄00.000539˝ 
-00΄00.000603˝ 

6358788.089 
 
   -0.0166 
   -0.0186 

F 
-37°19΄10.429372˝ N 
-37°19΄10.429845˝ G 
-37°19΄10.429972˝ CoA 

149°30΄00.000000˝ 
 
-00΄00.000473˝ 
-00΄00.000600˝ 

6358894.232 
 
   -0.0146 
   -0.0185 

G 
-37°25΄02.476276˝ N 
-37°25΄02.476564˝ G 
-37°25΄02.476677˝ CoA 

149°45΄00.000000˝ 
 
-00΄00.000288˝ 
-00΄00.000401˝ 

6358999.632 
 
   -0.0089 
   -0.0124 

Wauka 
1978 -37°30΄18.067400˝ 149°58΄32.993200˝    

 
TABLE 1: Points where curves cut meridians of A, B, C, etc at 0°15΄ intervals of longitude along 
Border Line  
N = Normal Section, G = Geodesic, CoA = Curve of Alignment 
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>> curve_of_alignment_lat 
 
================== 
Curve of Alignment 
================== 
Ellipsoid parameters 
a  = 6378137.0000 
f  = 1/298.257222101 
 
Terminal points of curve 
Latitude  P1 =  -36 47 49.223200 (D M S) 
Longitude P1 =  148 11 48.333300 (D M S) 
 
Latitude  P2 =  -37 30 18.067400 (D M S) 
Longitude P2 =  149 58 32.993200 (D M S) 
 
Cartesian coordinates 
            X               Y               Z 
P1   -4345789.609716  2694844.030716 -3799378.032024 
P2   -4386272.668061  2534883.268540 -3862005.992252 
 
Given longitude of P3 
Longitude P3 =  149 30  0.000000 (D M S) 
 
Latitude of P3 computed from Newton-Raphson iteration 
Latitude  P3 =  -37 19 10.429972 (D M S) 
iterations   =    4 
 
>> 
 

 

>> curve_of_alignment_lon 
 
================== 
Curve of Alignment 
================== 
Ellipsoid parameters 
a  = 6378137.0000 
f  = 1/298.257222101 
 
Terminal points of curve 
Latitude  P1 =  -36 47 49.223200 (D M S) 
Longitude P1 =  148 11 48.333300 (D M S) 
 
Latitude  P2 =  -37 30 18.067400 (D M S) 
Longitude P2 =  149 58 32.993200 (D M S) 
 
Cartesian coordinates 
            X               Y               Z 
P1   -4345789.609716  2694844.030716 -3799378.032024 
P2   -4386272.668061  2534883.268540 -3862005.992252 
 
Given latitude of P3 
Latitude  P3 =  -37 19 10.429972 (D M S) 
 
Longitude of P3 computed from Newton-Raphson iteration 
Longitude P3 =  149 29 60.000000 (D M S) 
iterations   =    5 
 
Longitude of P3 computed from trigonometric equation 
Longitude P3 =  149 29 60.000000 (D M S) 
theta P3     =    8 32 44.447661 (D M S) 
 
>> 
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MATLAB function curve_of_alignment_lat.m 

 
function curve_of_alignment_lat 
% 
% curve_of_alignment_lat: Given the terminal points P1 and P2 of a curve of  
% alignment on an ellipsoid, and the longitude of a point P3 on the curve, 
% this function computes the latitude of P3. 
  
%-------------------------------------------------------------------------- 
% Function:  curve_of_alignment_lat 
% 
% Usage:     curve_of_alignment_lat 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  3 October  2009 
%            Version  1.1 31 December 2009 
% 
% Purpose:   Given the terminal points P1 and P2 of a curve of alignment on  
%  an ellipsoid, and the longitude of a point P3 on the curve, this  
%  function computes the latitude of P3. 
% 
% Functions required:   
%      [D,M,S] = DMS(DecDeg) 
%      [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
%      [rm,rp] = radii(a,flat,lat); 
%         
% Variables:  
%  A,D            - curve of alignment functions of longitude 
%  a              - semi-major axis of ellipsoid 
%  b              - semi-minor axis of ellipsoid 
%  B,C,H,W,U,V    - constants of curve of alignment 
%  d2r            - degree to radian conversion factor 57.29577951... 
%  d_nu           - derivative of nu w.r.t latitude 
%  e2             - eccentricity of ellipsoid squared 
%  f              - f = 1/flat is the flattening of ellipsoid 
%  flat           - denominator of flattening of ellipsoid 
%  f_lat3         - function of latitude of P3 
%  fdash_lat3     - derivative of function of latitude of P3 
%  h1,h2          - ellipsoidal heights of P1 and P2 (Note: h1 = h2 = 0) 
%  iter           - number of iterations 
%  lat1,lat2,lat3 - latitude of P1, P1, P3 (radians) 
%  lon1,lon2,lon3 - longitude of P1, P2, P3 (radians) 
%  new_lat3       - next latiude in Newton-Raphson iteration 
%  nu             - radius of curvature in prime vertical plane 
%  rho            - radius of curvature in meridain plane 
%  X1,Y1,Z1       - Cartesian coordinates of P1 
%  X2,Y2,Z2       - Cartesian coordinates of P2 
% 
% Remarks:   
%  Given the terminal points P1 and P2 of a curve of alignment on an  
%  ellipsoid, and the longitude of a point P3 on the curve, this function  
%  computes the latitude of P3. 
% 
% References: 
%  [1] Deakin, R.E., 2009, 'The Curve of Alignment on an Ellipsoid',  
%         Lecture Notes, School of Mathematical and Geospatial Sciences,  
%         RMIT University, December 2009 
%  [2] Thomas, P.D., 1952, Conformal Projections in Geodesy and 
%         Cartography, Special Publication No. 251, Coast and Geodetic 
%         Survey, U.S. Department of Commerce, Washington, DC: U.S. 
%         Government Printing Office, pp. 66-67. 
% 
%-------------------------------------------------------------------------- 
  
% Degree to radian conversion factor 
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d2r   = 180/pi; 
  
% Set ellipsoid parameters 
a    = 6378137;    % GRS80 
flat = 298.257222101; 
 
% Compute ellipsoid constants 
f   = 1/flat; 
e2  = f*(2-f); 
  
% Set lat, lon and height of P1 and P2 on ellipsoid 
lat1 = -(36  + 47/60 + 49.2232/3600)/d2r;   % Spring  
lon1 =  (148 + 11/60 + 48.3333/3600)/d2r; 
lat2 = -(37  + 30/60 + 18.0674/3600)/d2r;   % Wauka 1978  
lon2 =  (149 + 58/60 + 32.9932/3600)/d2r; 
h1 = 0; 
h2 = 0; 
  
% Compute Cartesian coords of P1 and P2 
[X1,Y1,Z1] = Geo2Cart(a,flat,lat1,lon1,h1); 
[X2,Y2,Z2] = Geo2Cart(a,flat,lat2,lon2,h2); 
  
% Compute constants of Curve of Alignment 
C = e2*(Y2-Y1); 
H = e2*(X2-X1); 
W = X1*Y2-X2*Y1; 
U = (1-e2)*(Y1*Z2-Y2*Z1); 
V = (1-e2)*(X2*Z1-X1*Z2); 
B = (1-e2)*W; 
  
% Set longitude of P3 
lon3 = (149 + 30/60)/d2r; 
  
% Set constants A and D that are functions of longitude only 
A = (1-e2)*(C*cos(lon3)-H*sin(lon3)); 
D = U*cos(lon3)+V*sin(lon3); 
  
%---------------------------------------------------------- 
% Compute the latitude of P3 using Newton-Raphson iteration 
%---------------------------------------------------------- 
% Set starting value of phi = latitude 
lat3 = lat1; 
iter = 1; 
while 1 
    % Compute radii of curvature 
    [rho,nu]   = radii(a,flat,lat3); 
    d_nu       = nu^3/(a*a)*e2*sin(lat3)*cos(lat3); 
    f_lat3     = A*nu*sin(lat3)-B*tan(lat3)-D;  
    fdash_lat3 = d_nu*A*sin(lat3)+nu*A*cos(lat3)-B/(cos(lat3)^2); 
    new_lat3   = lat3-(f_lat3/fdash_lat3); 
    if abs(new_lat3 - lat3) < 1e-15 
        break; 
    end     
    lat3 = new_lat3; 
    if iter > 100 
        fprintf('Iteration for latitude failed to converge after 100 iterations'); 
        break; 
    end 
    iter = iter + 1; 
end; 
  
%----------------------- 
% Print result to screen 
%----------------------- 
  
fprintf('\n=================='); 
fprintf('\nCurve of Alignment'); 
fprintf('\n=================='); 
fprintf('\nEllipsoid parameters'); 
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fprintf('\na  = %12.4f',a); 
fprintf('\nf  = 1/%13.9f',flat); 
  
fprintf('\n\nTerminal points of curve'); 
% Print lat and lon of P1 
[D,M,S] = DMS(lat1*d2r); 
if D == 0 && lat1 < 0 
    fprintf('\nLatitude  P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon1*d2r); 
if D == 0 && lon1 < 0 
    fprintf('\nLongitude P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
% Print lat and lon of P2 
[D,M,S] = DMS(lat2*d2r); 
if D == 0 && lat2 < 0 
    fprintf('\n\nLatitude  P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\n\nLatitude  P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon2*d2r); 
if D == 0 && lon2 < 0 
    fprintf('\nLongitude P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
% Print Coordinate table 
fprintf('\n\nCartesian coordinates'); 
fprintf('\n            X               Y               Z'); 
fprintf('\nP1   %15.6f %15.6f %15.6f',X1,Y1,Z1); 
fprintf('\nP2   %15.6f %15.6f %15.6f',X2,Y2,Z2); 
  
% Print lat and lon of P3 
fprintf('\n\nGiven longitude of P3'); 
[D,M,S] = DMS(lon3*d2r); 
if D == 0 && lon3 < 0 
    fprintf('\nLongitude P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
fprintf('\n\nLatitude of P3 computed from Newton-Raphson iteration'); 
[D,M,S] = DMS(lat3*d2r); 
if D == 0 && lat3 < 0 
    fprintf('\nLatitude  P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
fprintf('\niterations   = %4d',iter); 
  
fprintf('\n\n'); 
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MATLAB function curve_of_alignment_lon.m 

 
function curve_of_alignment_lon 
% 
% curve_of_alignment_lon: Given the terminal points P1 and P2 of a curve of  
% alignment on an ellipsoid, and the latitude of a point P3 on the curve, 
% this function computes the longitude of P3. 
  
%-------------------------------------------------------------------------- 
% Function:  curve_of_alignment_lon 
% 
% Usage:     curve_of_alignment_lon 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0 31 December 2009 
% 
% Purpose:   Given the terminal points P1 and P2 of a curve of alignment on  
%  an ellipsoid, and the latitude of a point P3 on the curve, this function  
%  computes the longitude of P3. 
% 
% Functions required:   
%      [D,M,S] = DMS(DecDeg) 
%      [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
%      [rm,rp] = radii(a,flat,lat); 
%         
% Variables:  
%  a              - semi-major axis of ellipsoid 
%  b              - semi-minor axis of ellipsoid 
%  C,H,W,U,V      - constants of curve of alignment 
%  d2r            - degree to radian conversion factor 57.29577951... 
%  d_nu           - derivative of nu w.r.t latitude 
%  e2             - eccentricity of ellipsoid squared 
%  f              - f = 1/flat is the flattening of ellipsoid 
%  flat           - denominator of flattening of ellipsoid 
%  f_lon3         - function of longitude of P3 
%  fdash_lon3     - derivative of function of longitude of P3 
%  h1,h2          - ellipsoidal heights of P1 and P2 (Note: h1 = h2 = 0) 
%  iter           - number of iterations 
%  lambda         - longitude of P3 computed from trigonometric equation 
%  lat1,lat2,lat3 - latitude of P1, P1, P3 (radians) 
%  lon1,lon2,lon3 - longitude of P1, P2, P3 (radians) 
%  new_lon3       - next longitude in Newton-Raphson iteration 
%  nu             - radius of curvature in prime vertical plane 
%  P,Q,S          - functions of latitude of a point on the curve of 
%                 - alignment 
%  rho            - radius of curvature in meridain plane 
%  theta          - auxiliary angle in the computation of lambda 
%  X1,Y1,Z1       - Cartesian coordinates of P1 
%  X2,Y2,Z2       - Cartesian coordinates of P2 
% 
% Remarks:   
%  Given the terminal points P1 and P2 of a curve of alignment on an  
%  ellipsoid, and the latitude of a point P3 on the curve, this function  
%  computes the longitude of P3. 
% 
% References: 
%  [1] Deakin, R.E., 2009, 'The Curve of Alignment on an Ellipsoid',  
%         Lecture Notes, School of Mathematical and Geospatial Sciences,  
%         RMIT University, December 2009 
%  [2] Thomas, P.D., 1952, Conformal Projections in Geodesy and 
%         Cartography, Special Publication No. 251, Coast and Geodetic 
%         Survey, U.S. Department of Commerce, Washington, DC: U.S. 
%         Government Printing Office, pp. 66-67. 
% 
%-------------------------------------------------------------------------- 
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% Degree to radian conversion factor 
d2r   = 180/pi; 
  
% Set ellipsoid parameters 
a    = 6378137;    % GRS80 
flat = 298.257222101; 
 
% Compute ellipsoid constants 
f   = 1/flat; 
e2  = f*(2-f); 
  
% Set lat, lon and height of P1 and P2 on ellipsoid 
lat1 = -(36  + 47/60 + 49.2232/3600)/d2r;   % Spring  
lon1 =  (148 + 11/60 + 48.3333/3600)/d2r; 
lat2 = -(37  + 30/60 + 18.0674/3600)/d2r;   % Wauka 1978  
lon2 =  (149 + 58/60 + 32.9932/3600)/d2r; 
h1 = 0; 
h2 = 0; 
% Compute Cartesian coords of P1 and P2 
[X1,Y1,Z1] = Geo2Cart(a,flat,lat1,lon1,h1); 
[X2,Y2,Z2] = Geo2Cart(a,flat,lat2,lon2,h2); 
  
% Compute constants of Curve of Alignment 
C = e2*(Y2-Y1); 
H = e2*(X2-X1); 
W = X1*Y2-X2*Y1; 
U = (1-e2)*(Y1*Z2-Y2*Z1); 
V = (1-e2)*(X2*Z1-X1*Z2); 
  
% Set latitude of P3 
lat3 = -(37 + 19/60 + 10.429972/3600)/d2r; 
  
% Set constants P, Q, S that are functions of latitude only 
[rho,nu]   = radii(a,flat,lat3); 
P = C*nu*(1-e2)*sin(lat3)-U; 
Q = H*nu*(1-e2)*sin(lat3)+V; 
S = W*(1-e2)*tan(lat3); 
  
%---------------------- ------------------------------------ 
% Compute the longitude of P3 using Newton-Raphson iteration 
%----------------------- ----------------------------------- 
% Set starting value of lon3 = longitude of P3 
lon3 = lon1; 
iter = 1; 
while 1 
    % Compute radii of curvature 
    f_lon3     = P*cos(lon3)-Q*sin(lon3)-S;  
    fdash_lon3 = -P*sin(lon3)-Q*cos(lon3); 
    new_lon3   = lon3-(f_lon3/fdash_lon3); 
    if abs(new_lon3 - lon3) < 1e-15 
        break; 
    end     
    lon3 = new_lon3; 
    if iter > 100 
        fprintf('Iteration for longitude failed to converge after 100 iterations'); 
        break; 
    end 
    iter = iter + 1; 
end; 
  
%---------------------- ---------------------------------- 
% Compute the longitude of P3 using trigonometric equation 
%----------------------- --------------------------------- 
theta  = atan2(-Q,P); 
lambda = acos(S/sqrt(P^2+Q^2))+theta; 
  
%----------------------- 
% Print result to screen 
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%----------------------- 
  
fprintf('\n=================='); 
fprintf('\nCurve of Alignment'); 
fprintf('\n=================='); 
fprintf('\nEllipsoid parameters'); 
fprintf('\na  = %12.4f',a); 
fprintf('\nf  = 1/%13.9f',flat); 
  
fprintf('\n\nTerminal points of curve'); 
% Print lat and lon of P1 
[D,M,S] = DMS(lat1*d2r); 
if D == 0 && lat1 < 0 
    fprintf('\nLatitude  P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon1*d2r); 
if D == 0 && lon1 < 0 
    fprintf('\nLongitude P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
% Print lat and lon of P2 
[D,M,S] = DMS(lat2*d2r); 
if D == 0 && lat2 < 0 
    fprintf('\n\nLatitude  P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\n\nLatitude  P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon2*d2r); 
if D == 0 && lon2 < 0 
    fprintf('\nLongitude P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
% Print Coordinate table 
fprintf('\n\nCartesian coordinates'); 
fprintf('\n            X               Y               Z'); 
fprintf('\nP1   %15.6f %15.6f %15.6f',X1,Y1,Z1); 
fprintf('\nP2   %15.6f %15.6f %15.6f',X2,Y2,Z2); 
  
% Print lat and lon of P3 
fprintf('\n\nGiven latitude of P3'); 
[D,M,S] = DMS(lat3*d2r); 
if D == 0 && lat3 < 0 
    fprintf('\nLatitude  P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
fprintf('\n\nLongitude of P3 computed from Newton-Raphson iteration'); 
[D,M,S] = DMS(lon3*d2r); 
if D == 0 && lon3 < 0 
    fprintf('\nLongitude P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
fprintf('\niterations   = %4d',iter); 
  
fprintf('\n\nLongitude of P3 computed from trigonometric equation'); 
[D,M,S] = DMS(lambda*d2r); 
if D == 0 && lambda < 0 
    fprintf('\nLongitude P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
[D,M,S] = DMS(theta*d2r); 
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if D == 0 && theta < 0 
    fprintf('\ntheta P3     =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\ntheta P3     = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
  
fprintf('\n\n'); 
 
 
 

MATLAB function Geo2Cart.m 

 
function [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
% 
% [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
%   Function computes the Cartesian coordinates X,Y,Z of a point 
%   related to an ellipsoid defined by semi-major axis (a) and the 
%   denominator of the flattening (flat) given geographical  
%   coordinates latitude (lat), longitude (lon) and ellipsoidal  
%   height (h).  Latitude and longitude are assumed to be in radians. 
  
%-------------------------------------------------------------------------- 
% Function:  Geo2Cart() 
% 
% Usage:     [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0   6 April  2006 
%            Version  1.0  20 August 2007 
% 
% Functions required:   
%    radii() 
%         
% Purpose:    
%    Function Geo2Cart() will compute Cartesian coordinates X,Y,Z 
%    given geographical coordinates latitude, longitude (both in  
%    radians) and height of a  point related to an ellipsoid  
%    defined by semi-major axis (a) and denominator of flattening 
%    (flat).   
% 
% Variables: 
%    a       - semi-major axis of ellipsoid 
%    e2      - 1st eccentricity squared 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    h       - height above ellipsoid 
%    lat     - latitude (radians) 
%    lon     - longitude (radians) 
%    p       - perpendicular distance from minor axis of ellipsoid 
%    rm      - radius of curvature of meridian section of ellipsoid 
%    rp      - radius of curvature of prime vertical section of ellipsoid 
% 
% References: 
% [1] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian  
%     coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The 
%     Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999. 
%-------------------------------------------------------------------------- 
  
% calculate flattening f and ellipsoid constant e2 
f   = 1/flat; 
e2  = f*(2-f); 
  
% compute radii of curvature for the latitude 
[rm,rp] = radii(a,flat,lat); 
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% compute Cartesian coordinates X,Y,Z 
p = (rp+h)*cos(lat); 
X = p*cos(lon); 
Y = p*sin(lon); 
Z = (rp*(1-e2)+h)*sin(lat); 
 
 
 

MATLAB function radii.m 

 
function [rm,rp] = radii(a,flat,lat) 
% 
% [rm,rp]=radii(a,flat,lat)  Function computes radii of curvature in 
%   the meridian and prime vertical planes (rm and rp respectively) at a 
%   point whose latitude (lat) is known on an ellipsoid defined by 
%   semi-major axis (a) and denominator of flattening (flat). 
%   Latitude must be in radians. 
%   Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044); 
%            should return rm = 6359422.96233327 metres and  
%                          rp = 6386175.28947842 metres 
%            at latitude -37 48 33.1234 (DMS) on the GRS80 ellipsoid 
  
%-------------------------------------------------------------------------- 
% Function:  radii(a,flat,lat) 
% 
% Syntax:    [rm,rp] = radii(a,flat,lat); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  1 August 2003 
%            Version  2.0  6 April  2006 
%            Version  3.0  9 February 2008 
% 
% Purpose:   Function radii() will compute the radii of curvature in 
%            the meridian and prime vertical planes, rm and rp respectively 
%            for the point whose latitude (lat) is given for an ellipsoid 
%            defined by its semi-major axis (a) and denominator of  
%            flattening (flat). 
% 
% Return value: Function radii() returns rm and rp 
% 
% Variables:  
%  a      - semi-major axis of spheroid 
%  c      - polar radius of curvature 
%  c2     - cosine of latitude squared 
%  ep2    - 2nd-eccentricity squared 
%  f      - flattening of ellipsoid 
%  lat    - latitude of point (radians) 
%  rm     - radius of curvature in the meridian plane 
%  rp     - radius of curvature in the prime vertical plane 
%  V      - latitude function defined by V-squared = sqrt(1 + ep2*c2) 
%  V2,V3  - powers of V 
% 
% Remarks:    
%  Formulae are given in [1] (section 1.3.9, page 85) and in  
%  [2] (Chapter 2, p. 2-10) in a slightly different form. 
%   
% References: 
% [1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY, School of 
%        Mathematical and Geospatial Sciences, RMIT University, Melbourne, 
%        AUSTRALIA, March 2008. 
% [2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2, 
%        Intergovernmental Committee on Surveying and Mapping (ICSM),  
%        February 2002 (www.anzlic.org.au/icsm/gdatum) 
%-------------------------------------------------------------------------- 
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% compute flattening f eccentricity squared e2 
f   = 1/flat; 
c   = a/(1-f); 
ep2 = f*(2-f)/((1-f)^2); 
  
% calculate the square of the sine of the latitude 
c2 = cos(lat)^2; 
  
% compute latitude function V 
V2 = 1+ep2*c2; 
V  = sqrt(V2); 
V3 = V2*V; 
  
% compute radii of curvature 
rm = c/V3; 
rp = c/V; 
 
 
 

MATLAB function DMS.m 

 
function [D,M,S] = DMS(DecDeg) 
% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees and returns 
%   Degrees, Minutes and Seconds 
  
val = abs(DecDeg); 
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
if(DecDeg<0) 
  D = -D; 
end 
return 
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ABSTRACT 

These notes provide a detailed derivation of the equation for the great elliptic arc on an 

ellipsoid.  Using this equation and knowing the terminal points of the curve, a technique is 

developed for computing the location of points along the curve.  A MATLAB function is 

provided that demonstrates the algorithm developed. 

 

INTRODUCTION 

In geodesy, the great elliptic arc between  and  on the ellipsoid is the curve created 

by intersecting the ellipsoid with the plane containing ,  and O (the centre of the 

ellipsoid). 
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Figure 1:  Great elliptic arc on ellipsoid 
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Figure 1 shows P on the great elliptic arc between  and .   is the geocentric 

latitude of P and  is the longitude of P.   
1

P
2

P
P
θ

P
λ

There are an infinite number of planes that cut the surface of the ellipsoid and contain the 

chord  but only one of these will contain the centre O.  Two other planes are the 

normal section plane  (containing the normal at ) and the normal section plane  

(containing the normal at ).  All of these curves of intersection (including the great 

elliptic arc and the two normal section curves) are plane curves that are arcs of ellipses 

(for a proof of this see Deakin, 2009a).  All meridians of longitude on an ellipsoid and the 

ellipsoid equator are great elliptic arcs.  Parallels of latitude – excepting the equator – are 

not great elliptic arcs.  So we could say that the great elliptic arc is a 
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unique plane curve 

on the ellipsoid – since it is created by the single plane containing ,  and O.  
1

P
2

P But it is 

not the shortest distance between  and ; this unique property (shortest length) 

belongs to the geodesic. 
1

P
2

P

Great elliptic arcs are not much used in geodesy as they don't have a practical connection 

with theodolite observations made on the surface of the earth that are approximated as 

observations made on an ellipsoid; e.g., normal section curves and curves of alignment.  

Nor are they the shortest distance between points on the ellipsoid; but, if we ignore earth 

rotation, they are the curves traced out on the geocentric ellipsoid by the ground point of 

an earth orbiting satellite or a ballistic missile moving in an orbital plane containing the 

earth's centre of mass.  Here geocentric means O (the centre of the ellipsoid) is coincident 

with the centre of mass. 

The equation for the curve developed below is similar to that derived for the curve of 

alignment in Deakin (2009b) and it is not in a form suitable for computing the distance or 

azimuth of the curve.  But, as it contains functions of both the latitude and longitude of a 

point on the curve, it is suitable for computing the latitude of a point given a particular 

longitude; or alternatively the longitude of a point may be computed (iteratively) given a 

particular latitude. 

 

EQUATION OF GREAT ELLIPTIC ARC 

Figure 1 shows P on the great elliptic arc that passes through  and  on the ellipsoid.  

The semi-axes of the ellipsoid are a and b (  and the first-eccentricity squared  and 

the flattening f of the ellipsoid are defined by 
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Parallels of latitude φ  and meridians of longitude λ  have their respective reference planes; 

the equator and the Greenwich meridian, and Longitudes are measured 0  to  (east 

positive, west negative) from the Greenwich meridian and latitudes are measured  to 

 (north positive, south negative) from the equator.  The x,y,z geocentric Cartesian 

coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the 

minor axis (axis of revolution).  The xOz plane is the Greenwich meridian plane (the origin 

of longitudes) and the xOy plane is the equatorial plane.  The positive x-axis passes 

through the intersection of the Greenwich meridian and the equator, the positive y-axis is 

advanced  east along the equator and the positive z-axis passes through the north pole 

of the ellipsoid.   

D 180± D
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In Figure 1,  is the geocentric latitude of P and (geodetic) latitude  and geocentric 

latitude θ  are related by 
P
θ φ

 ( ) ( )
2 22

2
tan 1 tan tan 1 tan

b
e

a
θ φ φ= − = = − f φ  (2) 

The geometric relationship between geocentric latitude θ  and (geodetic) latitude φ  is 

shown in Figure 2. 
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Figure 2:  Meridian plane of P 

 

The great elliptic plane in Figure 1 is defined by points ,  and  that are ,  and 

the centre of the ellipsoid O respectively.  Cartesian coordinates of  and  are computed 

from the following equations 
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  (3) 

( )2

cos cos

cos sin

1 sin

x

y

z e

ν φ λ
ν φ λ

ν φ

=

=

= −

where  (see Figure 2) is the radius of curvature in the prime vertical plane and PHν =

 
2 21 sin

a

e
ν

φ
=

−
 (4) 

The Cartesian coordinates of point  are all zero. 

The General equation of a plane may be written as 

  (5) 0Ax By Cz D+ + + =

And the equation of the plane passing through points ,  and  is given in the form of 

a 3rd-order determinant 

 
1 1 1

2 1 2 1 2 1

3 2 3 2 3 2

0

x x y y z z

x x y y z z

x x y y z z

− − −
− − − =
− − −

 (6) 

or expanded into 2nd-order determinants 

 ( ) ( ) ( )2 1 2 1 2 1 2 1 2 1 2 1
1 1

3 2 3 2 3 2 3 2 3 2 3 2

0
y y z z x x z z x x y y

x x y y z z
y y z z x x z z x x y y

− − − − − −
− − − + − =

− − − − − − 1

}

}

 (7) 

Expanding the determinants in equation (7) gives 

  (8) 

( ) ( )( ) ( )( ){ }
( ) ( )( ) ( )( ){ }
( ) ( )( ) ( )( ){

1 2 1 3 2 2 1 3 2

1 2 1 3 2 2 1 3 2

1 2 1 3 2 2 1 3 2
0

x x y y z z z z y y

y y x x z z z z x x

z z x x y y y y x x

− − − − − −

− − − − − − −

+ − − − − − − =

Now since  and equation 
3 3 3

0x y z= = = (8) becomes 

  (9) 

( ) ( )( ) ( )( ){ }
( ) ( )( ) ( )( ){ }
( ) ( )( ) ( )( ){

1 2 1 2 2 1 2

1 2 1 2 2 1 2

1 2 1 2 2 1 2
0

x x y y z z z y

y y x x z z z x

z z x x y y y x

− − − − − −

− − − − − − −

+ − − − − − − =

Expanding and simplifying equation (9) gives 

  ( ) ( ) ( )1 2 2 1 1 2 2 1 1 2 2 1
0x y z y z y x z x z z x y x y− − − + − =

Replacing x, y and z with their equivalents, given by equations (3), gives 

  ( ) ( ) ( ) ( )2
1 2 2 1 1 2 2 1 1 2 2 1

cos cos cos sin 1 sin 0y z y z x z x z e x y x yν φ λ ν φ λ ν φ− − − + − − =
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φ

=

and dividing both sides by  gives the equation of the great elliptic arc as cosν

  (10) ( )2cos sin 1 tan 0A B C eλ λ φ− + −

where A, B and C are functions of the coordinates of the terminal points  and  
1

P
2

P

  (11) 1 2 2 1 1 2 2 1 1 2 2 1
A y z y z B x z x z C x y x y= − = − = −

Equation (10) is not suitable for computing the distance along a great elliptic arc, nor is it 

suitable for computing the azimuth of the curve, but by certain re-arrangements it is 

possible to solve (directly) for the latitude of a point on the curve given a longitude 

somewhere between the longitudes of the terminal points of the curve.  Or alternatively, 

solve (iteratively) for the longitude of a point given a latitude somewhere between the 

latitudes of the terminal points. 

 

SOLVING FOR THE LATITUDE 

A simple re-arrangement of equation (10) allows the latitude φ  to be evaluated from 

 
( )2

sin cos
tan

1

B A

C e

λ
φ

−
=

−

λ
 (12) 

where A and B and C are functions of terminal points  and  given by equations 
1

P
2

P (11). 

 

SOLVING FOR THE LONGITUDE 

The longitude λ  can be evaluated using Newton-Raphson iteration for the real roots of the 

equation  given in the form of an iterative equation ( ) 0f λ =

 ( ) ( )
( )( )
( )( )1

n

n n

n

f

f

λ
λ λ

λ
+

= −
′

 (13) 

where n denotes the nth iteration and  is given by equation ( )f λ (10) as 

  (14) ( ) ( )2cos sin 1 tanf A B C eλ λ λ= − + − φ

and the derivative ( ) ( ){d
f f

d
λ

λ
′ = }λ

λ

 is given by 

  (15) ( ) sin cosf A Bλ λ′ = − −
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An initial value of  (  for ) can be taken as the longitude of  and the functions 

 and 

( )1λ λ 1n =
1

P

( )( 1
f λ ( )( )1

f λ′  evaluated from equations (14) and (15) using .   (λ  for ) 

can now be computed from equation 

1
λ (2λ ) 2n =

( )1n
λ

+

(13) and this process repeated to obtain values 

.  This iterative process can be concluded when the difference between  and 

 reaches an acceptably small value. 

( ) ( )3 4
,λ λ

( )n
λ

,…

Alternatively, the longitude can be evaluated by a trigonometric equation derived as 

follows.  Equation (10) can be expressed as 

  (16) ( )2sin cos 1 tanB A C eλ λ− = − φ

θ

θ

and A, B and C are given by equations (11).  Equation (16) can be expressed as a 

trigonometric addition of the form 

  (17) 
( ) ( )21 tan cos

cos cos sin sin

C e R

R R

φ λ θ

λ θ λ

− = −

= +

Now, equating the coefficients of  and  in equations cosλ sinλ (17) and (16) gives 

  (18) cos ; sinA R B Rθ= − =

and using these relationships 

 2 2 ; tan
B

R A B
A

θ= + =
−

 (19) 

Substituting these results into equation (17) gives 

 
( )2

2 2

1 tan
arccos arctan

C e B
AA B

φ
λ

⎧ ⎫⎪ ⎪− ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪= +⎨ ⎬⎪ ⎪ −+⎪ ⎪ ⎩ ⎭⎪ ⎪⎩ ⎭

⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪
 (20) 

 

DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND A GREAT ELLIPTIC 

ARC 

There are five curves of interest in geodesy; the geodesic, the normal section, the great 

elliptic arc the loxodrome and the curve of alignment.   

The geodesic between  and  on an ellipsoid is the unique curve on the surface defining 

the shortest distance; all other curves will be longer in length.  The normal section curve 

 is a plane curve created by the intersection of the normal section plane containing the 

normal at  and also  with the ellipsoid surface.  And as we have shown (Deakin 
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2009a) there is the other normal section curve .  The curve of alignment (Deakin 

2009b, Thomas 1952) is the locus of all points P such that the normal section plane at P 

also contains the points  and .  The curve of alignment is very close to a geodesic.  

The great elliptic arc is the plane curve created by intersecting the plane containing ,  

and the centre O with the surface of the ellipsoid and the loxodrome is the curve on the 

surface that cuts each meridian between  and  at a constant angle. 
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Approximate equations for the difference in length between the geodesic, the normal 

section curve and the curve of alignment were developed by Clarke (1880, p. 133) and 

Bowring (1972, p. 283) developed an approximate equation for the difference between the 

geodesic and the great elliptic arc.  Following Bowring (1972), let 
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where R can be taken as the radius of curvature in the prime vertical at .  Now for a 

given value of s, D  will be a maximum if  and  in which case 
1

P

s− 45D
12

90α = D

2 2 2
12
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1
41 1

sin cos sinφ φ , thus 
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4e
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)
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For the GRS80 ellipsoid where (21 298.257222101, 2f e f f= = − , and for 1200000 ms  

(1200 km) and , equation 

=

6371000 mR = (22) gives . 0.001 mD s− <

 



MATLAB FUNCTIONS 

Two MATLAB functions are shown below; they are: great_elliptic_arc_lat.m and 

great_elliptic_arc_lon.m  Assuming that the terminal points of the curve are known, the 

first function computes the latitude of a point on the curve given a longitude and the 

second function computes the longitude of a point given the latitude.   

Output from the two functions is shown below for points on a great elliptic arc between 

the terminal points of the straight-line section of the Victorian–New South Wales border.  

This straight-line section of the border, between Murray Spring and Wauka 1978, is known 

as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border 

line in 1870-71.  Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast 

at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of 

the Murray River that is closest to Cape Howe.  The straight line is a normal section curve 

on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the 

normal to the ellipsoid at Murray Spring.  The GDA94 coordinates of Murray Spring and 

Wauka 1978 are: 
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′′

′′
  

Murray Spring: 37 47 49.2232 148 11 48.3333

Wauka 1978: 37 30 18.0674 149 58 32.9932

φ λ

φ λ

′ ′′ ′−
′ ′′ ′−

D D

D D

The normal section azimuth and distance are: 

  116 58 14.173757 176495.243760 m′ ′′D

The geodesic azimuth and distance are: 

  116 58 14.219146 176495.243758 m′ ′′D

Figure 3 shows a schematic view of the Black-Allan line (normal section) and the great 

elliptic arc.  The relationships between the great elliptic arc and the normal section have 

been computed at seven locations along the line (A, B, C, etc.) where meridians of 

longitude at 0 1  intervals cut the line.  These relationships are shown in Table 1. 5′D
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BLACK-ALLAN LINE:  VICTORIA/NSW BORDER

The Black-Allan Line is a normal section curve
on the reference ellipsoid between P1 (Murray 
Spring) and P2 (Wauka 1978).  This curve is the 
intersection of the normal section plane and the 
ellipsoid, and the normal section contains P1,
the normal to the ellipsoid at P1, and P2.

The GDA94 coordinates of Murray Spring and 
Wauka 1978 are:
Murray Spring:  -37°47’49.2232”   148°11’48.3333”
Wauka 1978

φ λ
:     -37°30’18.0674”   149°58’32.9932”

The normal section azimuth and distance are: 
116°58’14.173757” 176495.243760 m.

φ λ

149°45’

149°30’

149°15’

149°00’

148°45’

148°30’

148°15’ Great Elliptic Arc

Normal Section

The Great Elliptic Arc is shown plotted at an exaggerated scale
with respect to the Border Line (normal section).
At longitude 149°00’E. the Great Elliptic Arc is 1.939 m north of 
the Border Line.  
At longitude 149°30’E. the Great Elliptic Arc is 1.522 m north of
the Border Line.  

Figure 3 

 

 

BLACK-ALLAN LINE:  VICTORIA/NSW BORDER 
 

GDA94 Ellipsoid values NAME 
LATITUDE LONGITUDE dφ ρ dm = ρ×dφ 

Murray 
Spring -36°47΄49.223200˝ 148°11΄48.333300˝    

A -36°49΄07.598047˝ N 
-36°49΄07.590584˝ GEA 148°15΄00.000000˝  

+00΄00.007463˝ 6358356.102  
+0.2301 

B -36°55΄13.876510˝ N 
-36°55΄13.840305˝ GEA 148°30΄00.000000˝  

+00΄00.036205˝ 6358465.209  
+1.1161 

C -37°01΄17.289080˝ N 
-37°01΄17.234433˝ GEA 148°45΄00.000000˝  

+00΄00.054647˝ 6358573.577  
+1.6846 

D -37°07΄17.845554˝ N 
-37°07΄17.782643˝ GEA 149°00΄00.000000˝  

+00΄00.062911˝ 6358681.204  
+1.9394 

E -37°13΄15.555723˝ N 
-37°13΄15.494607˝ GEA 149°15΄00.000000˝  

+00΄00.061116˝ 6358788.089  
+1.8841 

F -37°19΄10.429372˝ N 
-37°19΄10.379991˝ GEA 149°30΄00.000000˝  

+00΄00.049381˝ 6358894.232  
+1.5224 

G -37°25΄02.476276˝ N 
-37°25΄02.448453˝ GEA 149°45΄00.000000˝  

+00΄00.027823˝ 6358999.632  
+0.8578 

Wauka 
1978 

-37°30΄18.067400˝ 149°58΄32.993200˝    

 
TABLE 1: Points where the Great Elliptic Arc cuts meridians of A, B, C, etc at 0°15΄ intervals of 
longitude along Border Line.  N = Normal Section, GEA = Great Elliptic Arc 
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>> great_elliptic_arc_lat 
 
================== 
Great Elliptic Arc 
================== 
Ellipsoid parameters 
a  = 6378137.0000 
f  = 1/298.257222101 
 
Terminal points of curve 
Latitude  P1 =  -36 47 49.223200 (D M S) 
Longitude P1 =  148 11 48.333300 (D M S) 
 
Latitude  P2 =  -37 30 18.067400 (D M S) 
Longitude P2 =  149 58 32.993200 (D M S) 
 
Cartesian coordinates 
            X               Y               Z 
P1   -4345789.609716  2694844.030716 -3799378.032024 
P2   -4386272.668061  2534883.268540 -3862005.992252 
 
Given longitude of P3 
Longitude P3 =  149 30  0.000000 (D M S) 
 
Latitude of P3 computed from trigonometric equation 
Latitude  P3 =  -37 19 10.379991 (D M S) 
 
>> 
 

 

>> great_elliptic_arc_lon 
 
================== 
Great Elliptic Arc 
================== 
Ellipsoid parameters 
a  = 6378137.0000 
f  = 1/298.257222101 
 
Terminal points of curve 
Latitude  P1 =  -36 47 49.223200 (D M S) 
Longitude P1 =  148 11 48.333300 (D M S) 
 
Latitude  P2 =  -37 30 18.067400 (D M S) 
Longitude P2 =  149 58 32.993200 (D M S) 
 
Cartesian coordinates 
            X               Y               Z 
P1   -4345789.609716  2694844.030716 -3799378.032024 
P2   -4386272.668061  2534883.268540 -3862005.992252 
 
Given latitude of P3 
Latitude  P3 =  -37 19 10.379991 (D M S) 
 
Longitude of P3 computed from Newton-Raphson iteration 
Longitude P3 =  149 30  0.000001 (D M S) 
iterations   =    5 
 
Longitude of P3 computed from trigonometric equation 
Longitude P3 =  149 30  0.000001 (D M S) 
theta P3     =    8 39 58.683516 (D M S) 
 
>> 



 
Great Elliptic Arc.doc  11 

MATLAB function great_elliptic_arc_lat.m 

 
function great_elliptic_arc_lat 
% 
% great_elliptic_arc_lat: Given the terminal points P1 and P2 of a great  
% elliptic arc on an ellipsoid, and the longitude of a point P3 on the  
% curve, this function computes the latitude of P3. 
  
%-------------------------------------------------------------------------- 
% Function:  great_elliptic_arc_lat 
% 
% Usage:     great_elliptic_arc_lat 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  3 October 2009 
%            Version  1.1  5 January 2010 
% 
% Purpose:   Given the terminal points P1 and P2 of a great elliptic arc on 
%  an ellipsoid, and the longitude of a point P3 on the curve, this  
%  function computes the latitude of P3. 
% 
% Functions required:   
%      [D,M,S] = DMS(DecDeg) 
%      [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
%      [rm,rp] = radii(a,flat,lat); 
%         
% Variables:  
%  A,B,C          - constants of great elliptic arc 
%  a              - semi-major axis of ellipsoid 
%  b              - semi-minor axis of ellipsoid 
%  d2r            - degree to radian conversion factor 57.29577951... 
%  e2             - eccentricity of ellipsoid squared 
%  f              - f = 1/flat is the flattening of ellipsoid 
%  flat           - denominator of flattening of ellipsoid 
%  h1,h2          - ellipsoid heights of P1 and P2 
%  lat1,lat2,lat3 - latitude of P1, P1, P3 (radians) 
%  lon1,lon2,lon3 - longitude of P1, P2, P3 (radians) 
%  nu             - radius of curvature in prime vertical plane 
%  rho            - radius of curvature in meridain plane 
%  X1,Y1,Z1       - Cartesian coordinates of P1 
%  X2,Y2,Z2       - Cartesian coordinates of P2 
% 
% Remarks: 
% 
% References: 
%  [1] Deakin, R.E., 2010, 'The Great Elliptic Arc on an Ellipsoid',  
%         Lecture Notes, School of Mathematical and Geospatial Sciences,  
%         RMIT University, January 2010 
% 
%-------------------------------------------------------------------------- 
  
% Degree to radian conversion factor 
d2r   = 180/pi; 
  
% Set ellipsoid parameters 
a    = 6378137;    % GRS80 
flat = 298.257222101; 
% a    = 6378160;     % ANS 
% flat = 298.25; 
% a = 20926062;  % CLARKE 1866 
% b = 20855121; 
% f = 1-(b/a); 
% flat = 1/f; 
  
% Compute ellipsoid constants 
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f   = 1/flat; 
e2  = f*(2-f); 
  
% Set lat, lon and height of P1 and P2 on ellipsoid 
lat1 = -(36  + 47/60 + 49.2232/3600)/d2r;   % Spring  
lon1 =  (148 + 11/60 + 48.3333/3600)/d2r; 
lat2 = -(37  + 30/60 + 18.0674/3600)/d2r;   % Wauka 1978  
lon2 =  (149 + 58/60 + 32.9932/3600)/d2r; 
h1 = 0; 
h2 = 0; 
% Compute Cartesian coords of P1 and P2 
[X1,Y1,Z1] = Geo2Cart(a,flat,lat1,lon1,h1); 
[X2,Y2,Z2] = Geo2Cart(a,flat,lat2,lon2,h2); 
  
% Compute constants of Curve of Alignment 
A = Y1*Z2-Y2*Z1; 
B = X1*Z2-X2*Z1; 
C = X1*Y2-X2*Y1; 
  
% Set longitude of P3 
lon3 = (149 + 30/60)/d2r; 
  
% Compute latitude of P3 
lat3 = atan((B*sin(lon3)-A*cos(lon3))/(C*(1-e2))); 
  
%----------------------- 
% Print result to screen 
%----------------------- 
  
fprintf('\n=================='); 
fprintf('\nGreat Elliptic Arc'); 
fprintf('\n=================='); 
fprintf('\nEllipsoid parameters'); 
fprintf('\na  = %12.4f',a); 
fprintf('\nf  = 1/%13.9f',flat); 
  
fprintf('\n\nTerminal points of curve'); 
% Print lat and lon of P1 
[D,M,S] = DMS(lat1*d2r); 
if D == 0 && lat1 < 0 
    fprintf('\nLatitude  P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon1*d2r); 
if D == 0 && lon1 < 0 
    fprintf('\nLongitude P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
% Print lat and lon of P2 
[D,M,S] = DMS(lat2*d2r); 
if D == 0 && lat2 < 0 
    fprintf('\n\nLatitude  P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\n\nLatitude  P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon2*d2r); 
if D == 0 && lon2 < 0 
    fprintf('\nLongitude P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
% Print Coordinate table 
fprintf('\n\nCartesian coordinates'); 
fprintf('\n            X               Y               Z'); 
fprintf('\nP1   %15.6f %15.6f %15.6f',X1,Y1,Z1); 
fprintf('\nP2   %15.6f %15.6f %15.6f',X2,Y2,Z2); 
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% Print lat and lon of P3 
fprintf('\n\nGiven longitude of P3'); 
[D,M,S] = DMS(lon3*d2r); 
if D == 0 && lon3 < 0 
    fprintf('\nLongitude P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
fprintf('\n\nLatitude of P3 computed from trigonometric equation'); 
[D,M,S] = DMS(lat3*d2r); 
if D == 0 && lat3 < 0 
    fprintf('\nLatitude  P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
fprintf('\n\n'); 
 
 
 

MATLAB function great_elliptic_arc_lon.m 

 
function great_elliptic_arc_lon 
% 
% great_elliptic_arc_lon: Given the terminal points P1 and P2 of a great  
% elliptic arc on an ellipsoid, and the latitude of a point P3 on the  
% curve, this function computes the longitude of P3. 
  
%-------------------------------------------------------------------------- 
% Function:  great_elliptic_arc_lon 
% 
% Usage:     great_elliptic_arc_lon 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  3 October 2009 
%            Version  1.1  5 January 2010 
% 
% Purpose:   Given the terminal points P1 and P2 of a great elliptic arc on 
%  an ellipsoid, and the latitude of a point P3 on the curve, this  
%  function computes the longitude of P3. 
% 
% Functions required:   
%      [D,M,S] = DMS(DecDeg) 
%      [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
%      [rm,rp] = radii(a,flat,lat); 
%         
% Variables:  
%  A,B,C          - constants of great elliptic arc 
%  a              - semi-major axis of ellipsoid 
%  b              - semi-minor axis of ellipsoid 
%  d2r            - degree to radian conversion factor 57.29577951... 
%  e2             - eccentricity of ellipsoid squared 
%  f              - f = 1/flat is the flattening of ellipsoid 
%  flat           - denominator of flattening of ellipsoid 
%  f_lat3         - function of latitude of P3 
%  fdash_lat3     - derivative of function of latitude of Pp3 
%  h1,h2          - ellipsoid heights of P1 and P2 
%  iter           - number of iterations 
%  lambda         - longitude of P3 computed from trigonometric equation 
%  lat1,lat2,lat3 - latitude of P1, P1, P3 (radians) 
%  lon1,lon2,lon3 - longitude of P1, P2, P3 (radians) 
%  new_lat3       - next latiude in Newton-Raphson iteration 
%  nu             - radius of curvature in prime vertical plane 
%  rho            - radius of curvature in meridain plane 
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%  theta          - auxiliary angle in the computation of lambda 
%  X1,Y1,Z1       - Cartesian coordinates of P1 
%  X2,Y2,Z2       - Cartesian coordinates of P2 
% 
% Remarks: 
% 
% References: 
%  [1] Deakin, R.E., 2010, 'The Great Elliptic Arc on an Ellipsoid',  
%         Lecture Notes, School of Mathematical and Geospatial Sciences,  
%         RMIT University, January 2010 
% 
%-------------------------------------------------------------------------- 
  
% Degree to radian conversion factor 
d2r   = 180/pi; 
  
% Set ellipsoid parameters 
a    = 6378137;    % GRS80 
flat = 298.257222101; 
% a    = 6378160;     % ANS 
% flat = 298.25; 
% a = 20926062;  % CLARKE 1866 
% b = 20855121; 
% f = 1-(b/a); 
% flat = 1/f; 
  
% Compute ellipsoid constants 
f   = 1/flat; 
e2  = f*(2-f); 
  
% Set lat, lon and height of P1 and P2 on ellipsoid 
lat1 = -(36  + 47/60 + 49.2232/3600)/d2r;   % Spring  
lon1 =  (148 + 11/60 + 48.3333/3600)/d2r; 
lat2 = -(37  + 30/60 + 18.0674/3600)/d2r;   % Wauka 1978  
lon2 =  (149 + 58/60 + 32.9932/3600)/d2r; 
h1 = 0; 
h2 = 0; 
% Compute Cartesian coords of P1 and P2 
[X1,Y1,Z1] = Geo2Cart(a,flat,lat1,lon1,h1); 
[X2,Y2,Z2] = Geo2Cart(a,flat,lat2,lon2,h2); 
  
% Compute constants of Curve of Alignment 
A = Y1*Z2-Y2*Z1; 
B = X1*Z2-X2*Z1; 
C = X1*Y2-X2*Y1; 
  
% Set latitude of P3 
lat3 = -(37 + 19/60 + 10.379991/3600)/d2r; 
  
%----------------------------------------------------------- 
% Compute the longitude of P3 using Newton-Raphson iteration 
%----------------------------------------------------------- 
% Set starting value of lon3 = longitude of P1 
lon3 = lon1; 
iter = 1; 
while 1 
    % Compute radii of curvature 
    f_lon3     = A*cos(lon3)-B*sin(lon3)+C*(1-e2)*tan(lat3);  
    fdash_lon3 = -A*sin(lon3)-B*cos(lon3); 
    new_lon3   = lon3-(f_lon3/fdash_lon3); 
    if abs(new_lon3 - lon3) < 1e-15 
        break; 
    end     
    lon3 = new_lon3; 
    if iter > 100 
        fprintf('Iteration for longitude failed to converge after 100 iterations'); 
        break; 
    end 
    iter = iter + 1; 
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end; 
  
%--------------------------------------------------------- 
% Compute the longitude of P3 using trigonometric equation 
%--------------------------------------------------------- 
theta  = atan2(B,-A); 
lambda = acos(C*(1-e2)*tan(lat3)/sqrt(A^2+B^2))+theta; 
  
%----------------------- 
% Print result to screen 
%----------------------- 
  
fprintf('\n=================='); 
fprintf('\nGreat Elliptic Arc'); 
fprintf('\n=================='); 
fprintf('\nEllipsoid parameters'); 
fprintf('\na  = %12.4f',a); 
fprintf('\nf  = 1/%13.9f',flat); 
  
fprintf('\n\nTerminal points of curve'); 
% Print lat and lon of P1 
[D,M,S] = DMS(lat1*d2r); 
if D == 0 && lat1 < 0 
    fprintf('\nLatitude  P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon1*d2r); 
if D == 0 && lon1 < 0 
    fprintf('\nLongitude P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
% Print lat and lon of P2 
[D,M,S] = DMS(lat2*d2r); 
if D == 0 && lat2 < 0 
    fprintf('\n\nLatitude  P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\n\nLatitude  P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon2*d2r); 
if D == 0 && lon2 < 0 
    fprintf('\nLongitude P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
% Print Coordinate table 
fprintf('\n\nCartesian coordinates'); 
fprintf('\n            X               Y               Z'); 
fprintf('\nP1   %15.6f %15.6f %15.6f',X1,Y1,Z1); 
fprintf('\nP2   %15.6f %15.6f %15.6f',X2,Y2,Z2); 
  
% Print lat and lon of P3 
fprintf('\n\nGiven latitude of P3'); 
[D,M,S] = DMS(lat3*d2r); 
if D == 0 && lat3 < 0 
    fprintf('\nLatitude  P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
fprintf('\n\nLongitude of P3 computed from Newton-Raphson iteration'); 
[D,M,S] = DMS(lon3*d2r); 
if D == 0 && lon3 < 0 
    fprintf('\nLongitude P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
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fprintf('\niterations   = %4d',iter); 
  
fprintf('\n\nLongitude of P3 computed from trigonometric equation'); 
[D,M,S] = DMS(lambda*d2r); 
if D == 0 && lambda < 0 
    fprintf('\nLongitude P3 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
[D,M,S] = DMS(theta*d2r); 
if D == 0 && theta < 0 
    fprintf('\ntheta P3     =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\ntheta P3     = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
fprintf('\n\n'); 
 
 
 
 

MATLAB function Geo2Cart.m 

 
function [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
% 
% [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
%   Function computes the Cartesian coordinates X,Y,Z of a point 
%   related to an ellipsoid defined by semi-major axis (a) and the 
%   denominator of the flattening (flat) given geographical  
%   coordinates latitude (lat), longitude (lon) and ellipsoidal  
%   height (h).  Latitude and longitude are assumed to be in radians. 
  
%-------------------------------------------------------------------------- 
% Function:  Geo2Cart() 
% 
% Usage:     [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0   6 April  2006 
%            Version  1.0  20 August 2007 
% 
% Functions required:   
%    radii() 
%         
% Purpose:    
%    Function Geo2Cart() will compute Cartesian coordinates X,Y,Z 
%    given geographical coordinates latitude, longitude (both in  
%    radians) and height of a  point related to an ellipsoid  
%    defined by semi-major axis (a) and denominator of flattening 
%    (flat).   
% 
% Variables: 
%    a       - semi-major axis of ellipsoid 
%    e2      - 1st eccentricity squared 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    h       - height above ellipsoid 
%    lat     - latitude (radians) 
%    lon     - longitude (radians) 
%    p       - perpendicular distance from minor axis of ellipsoid 
%    rm      - radius of curvature of meridian section of ellipsoid 
%    rp      - radius of curvature of prime vertical section of ellipsoid 
% 
% References: 
% [1] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian  
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%     coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The 
%     Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999. 
%-------------------------------------------------------------------------- 
  
% calculate flattening f and ellipsoid constant e2 
f   = 1/flat; 
e2  = f*(2-f); 
  
% compute radii of curvature for the latitude 
[rm,rp] = radii(a,flat,lat); 
  
% compute Cartesian coordinates X,Y,Z 
p = (rp+h)*cos(lat); 
X = p*cos(lon); 
Y = p*sin(lon); 
Z = (rp*(1-e2)+h)*sin(lat); 
 
 
 

MATLAB function radii.m 

 
function [rm,rp] = radii(a,flat,lat) 
% 
% [rm,rp]=radii(a,flat,lat)  Function computes radii of curvature in 
%   the meridian and prime vertical planes (rm and rp respectively) at a 
%   point whose latitude (lat) is known on an ellipsoid defined by 
%   semi-major axis (a) and denominator of flattening (flat). 
%   Latitude must be in radians. 
%   Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044); 
%            should return rm = 6359422.96233327 metres and  
%                          rp = 6386175.28947842 metres 
%            at latitude -37 48 33.1234 (DMS) on the GRS80 ellipsoid 
  
%-------------------------------------------------------------------------- 
% Function:  radii(a,flat,lat) 
% 
% Syntax:    [rm,rp] = radii(a,flat,lat); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  1 August 2003 
%            Version  2.0  6 April  2006 
%            Version  3.0  9 February 2008 
% 
% Purpose:   Function radii() will compute the radii of curvature in 
%            the meridian and prime vertical planes, rm and rp respectively 
%            for the point whose latitude (lat) is given for an ellipsoid 
%            defined by its semi-major axis (a) and denominator of  
%            flattening (flat). 
% 
% Return value: Function radii() returns rm and rp 
% 
% Variables:  
%  a      - semi-major axis of spheroid 
%  c      - polar radius of curvature 
%  c2     - cosine of latitude squared 
%  ep2    - 2nd-eccentricity squared 
%  f      - flattening of ellipsoid 
%  lat    - latitude of point (radians) 
%  rm     - radius of curvature in the meridian plane 
%  rp     - radius of curvature in the prime vertical plane 
%  V      - latitude function defined by V-squared = sqrt(1 + ep2*c2) 
%  V2,V3  - powers of V 
% 
% Remarks:    
%  Formulae are given in [1] (section 1.3.9, page 85) and in  
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%  [2] (Chapter 2, p. 2-10) in a slightly different form. 
%   
% References: 
% [1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY, School of 
%        Mathematical and Geospatial Sciences, RMIT University, Melbourne, 
%        AUSTRALIA, March 2008. 
% [2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2, 
%        Intergovernmental Committee on Surveying and Mapping (ICSM),  
%        February 2002 (www.anzlic.org.au/icsm/gdatum) 
%-------------------------------------------------------------------------- 
  
% compute flattening f eccentricity squared e2 
f   = 1/flat; 
c   = a/(1-f); 
ep2 = f*(2-f)/((1-f)^2); 
  
% calculate the square of the sine of the latitude 
c2 = cos(lat)^2; 
  
% compute latitude function V 
V2 = 1+ep2*c2; 
V  = sqrt(V2); 
V3 = V2*V; 
  
% compute radii of curvature 
rm = c/V3; 
rp = c/V; 
 
 

MATLAB function DMS.m 

 
function [D,M,S] = DMS(DecDeg) 
% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees and returns 
%   Degrees, Minutes and Seconds 
  
val = abs(DecDeg); 
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
if(DecDeg<0) 
  D = -D; 
end 
return 
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ABSTRACT 

These notes provide a detailed explanation of the geometry of the loxodrome on the 

ellipsoid.  Equations are derived for azimuth and distance of a loxodrome between two 

points on an ellipsoid and these equations enable the development of algorithms for the 

solution of the direct and inverse problems of the loxodrome.  A MATLAB function is 

provided that demonstrates an algorithm for the inverse problem. 

 

INTRODUCTION 

The loxodrome between  and  on the ellipsoid is a curved line such that every element 

of the curve ds intersects a meridian at a constant azimuth α .  Unless  or 

 the loxodrome will spiral around the ellipsoid and terminate at one of the poles.  In 

other cases the loxodrome will lie along a meridian of longitude (  or a parallel 

of latitude ( ). 

1
P

2
P

0 ,90 ,180α = D D

),180D D

D

270D

0α =

90 ,270α = D D

loxodrome

 

Figure 1:  Loxodrome on the earth's surface 
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In marine and air navigation, aircraft and ships sailing or flying on fixed compass headings 

are moving along loxodromes, hence knowledge of loxodromes is important in navigation.  

Mercator's projection – a normal aspect cylindrical conformal projection – has the unique 

property that loxodromes on the earth's surface are projected as straight lines on the map.   

In geodesy the direct problem (computing position given azimuth and distance from a 

known location) and the inverse problem (computing azimuth and distance between known 

positions) are fundamental operations and can be likened to the equivalent operations of 

plane surveying; radiations (computing coordinates of points given bearings and distances 

radiating from a point of known coordinates) and joins; (computing bearings and distances 

between points having known coordinates).  The direct and inverse problems in geodesy 

are usually associated with the geodesic which is the unique curve defining the shortest 

path on the ellipsoid but they can also be associated with other curves.  So; 

The direct problem of the loxodrome on the ellipsoid is: given latitude and longitude 

of  and the azimuth  and distance s of a loxodrome between  and ; compute 

the latitude and longitude of . 
1

P α
1

P
2

P

2
P

The inverse problem of the loxodrome on the ellipsoid is: given the latitude and 

longitude of  and ; compute the azimuth α  and distance s of the loxodrome 

between  and . 
1

P
2

P

1
P

2
P

The equations necessary for the solution of the direct and inverse problems are derived 

from the differential geometry of the ellipsoid and in particular, relationships that can be 

obtained from the differential rectangle on the ellipsoid.  Also, meridian distance (the 

distance along a meridian from the equator) is used in computing loxodrome distances.  

Discussions of differential geometry of the ellipsoid and meridian distance can be found in 

Deakin & Hunter (2008) or geodesy textbooks (e.g., Lauf 1983; Bomford 1980), and an 

excellent treatment of the loxodrome on the ellipsoid can be found in Bowring (1985). 

 

THE ELLIPSOID 

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse about its 

minor axis.  The size and shape of an ellipsoid is defined by one of three pairs of 

parameters: (i)  where a and b are the ,a b semi-major and semi-minor axes lengths of an 

ellipsoid respectively (and a ), or (ii) a f  where f is the b> , flattening of an ellipsoid, or 

(iii)  where  is the square of the first 2,a e 2e eccentricity of an ellipsoid.   
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Figure 2:  The reference ellipsoid 

 

The ellipsoid parameters  are related by the following equations 2, , ,a b f e

 1
a b b

f
a a
−

= = −  (1) 

 ( )1b a f= −   (2) 

 (
2 2 2

2
2 21 2

a b b
e

a a
−

= = − = − )f f  (3) 

 ( ) (
2

22
21 1 2 1

b
e f f

a
− = = − − = − )f  (4) 

The second eccentricity e  of an ellipsoid is also of use and ′

 
( )

( )

2 2 2 2
2

22 2 2

2
1

1 1

f fa b a e
e

b b e f

−−′ = = − = =
− −

 (5) 

 
2

2
21

e
e

e

′
=

′+
 (6) 

In Figure 2 the normal to the surface at P intersects the rotational axis of the ellipsoid 

(the z-axis) at H making an angle φ  with the equatorial plane of the ellipsoid – this is the 

latitude of P.  The longitude λ  is the angle between the Greenwich meridian plane (a 

reference plane) and the meridian plane (the z-w plane) containing the normal through P.  

 and  are φ λ curvilinear coordinates and meridians of longitude (curves of constant λ ) a

parallels of latitude (curves of constant φ ) are parametric curves on the ellipsoidal surfa

At P on th

nd 

ce. 

e surface of the ellipsoid, planes containing the normal to the ellipsoid intersect 

the surface creating elliptical sections known as normal sections.  Amongst the infinite 

number of possible normal sections at a P; each having a certain radius of curvature, two 
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are of interest: (i) the meridian section, containing the axis of revolution of the ellipsoid 

and having the least radius of curvature, denoted by ρ , and (ii) the prime vertical section, 

 

perpendicular to the meridian plane and having the greatest radius of curvature, denoted 

by ν . 

( )
( )

( )
3
2

2 2

32 2

1 1

1 sin

a e a e

We
ρ

φ

− −
= =

−
 (7) 

 
( )

1
22 21 sin

a a
We

ν
φ

= =
−

 (8) 

 2  (9) 

or P, the centre of the radius of curvature of th

rmal 

between

ns for the radii of curvature  and  are given by 

 

2 21 sinW e φ= −

F e prime vertical section is at H and 

PHν = .  The centre of the radius of curvature of the meridian section lies on the no

 P and H. 

Alternative equatio ρ ν

2a c

( )
3
2 32 21 cos Vb e

ρ
φ

= =
′+

 (10) 

 
( )

1
2

2

2 21 cos

a c
Vb e

ν
φ

= =
′+

 (11) 

 
2

1
a a

c
b f

= =
−

 (12) 

 2  (13) 

nd c is the polar radius of curvature

2 21 cosV e φ′= +

a
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 of the ellip

 

soid. 

The latitude functions W and V are related as follows 

( )
1
2

2
2 V V

2 2
   and   

1 1

b
W W V

e ae
= = =

′+ ′+
 (14) 

Points on the ellipsoid surface have curvilinear coordinates  and Cartesian coordinates 

he 

 

,φ λ

x,y,z where the x-z plane is the Greenwich meridian plane, t x-y plane is the equatorial 

plane and the y-z plane is a meridian plane 90º east of the Greenwich meridian plane.  

Cartesian and curvilinear coordinates are related by 

cos cosx ν φ λ=

( )2

cos cos

1 sin

y

z e

ν φ λ

ν

=

= − φ

 (15) 
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)Note that  is the distance along the normal from a point on the surface to the 

point where the normal cuts the equatorial plane. 

( 21 eν −

 

DIFFERENTIAL RELATIONSHIPS FOR THE LOXODROME ON THE ELLIPSOID 

The derivation of equations relating to the loxodrome requires an understanding of the 

connection between differentially small quantities on the surface of the ellipsoid.   
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Figure 3:  The differential rectangle on an ellipsoid (a,b) 

 

These relationships can be derived from the differential rectangle, with diagonal PQ in 

Figure 3 which shows P and Q on an ellipsoid whose semi-axes are a and b ( .  P and 

Q are separated by differential changes in latitude d  and longitude d  and are connected 

by a loxodrome of length ds making an angle  (the azimuth) with the meridian through 

P.  The meridians λ  and , and the parallels φ  and  form a differential 

rectangle on the surface of the ellipsoid.  The differential distances dp  along the parallel φ  

and dm  along the meridian λ  are 

)

λ φ

φ

a b>

φ λ

α

dλ + dφ+

  (16) cosdp wd dλ ν φ λ= =

   (17) dm dρ φ=

where ρ  and ν   are radii of curvature in the meridian and prime vertical planes 

respectively and  is the perpendicular distance from the rotational axis NOS. cosw ν=



From Figure 3, the differential distance ds is given by 

 

2 2

2 2 2 2 2

2

2

2 2

cos

cos
cos

cos

ds dm dp

d d

d
d

dq d

ρ φ ν φ λ

ρ φ
ν φ λ

ν φ

ν φ λ

= +

= +

⎛ ⎞⎟⎜ ⎟⎜= +⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

= +  (18) 

q is known as the isometric latitude defined by the differential relationship 

 
cos

dq d
ρ

φ
ν φ

=  (19) 

( ,q λ)

λ

 is a curvilinear coordinate system on the ellipsoid with isometric parameters where 

isometric means of equal measure (iso = equal; metric = able to be measured).  We can 

see this from equation (18) where the differential distances along the parametric curves q 

and λ  are  and , i.e., the differential distances are equal for 

equal angular differentials dq and d . 

cosdm dqν φ= cosdp dν φ=

λ

Also from Figure 3 the azimuth α  of the loxodrome is obtained from 

 
cos

tan
d d

d d

ν φ λ λ
α

ρ φ
= =

q
 (20) 

and azimuth  and distance s are linked by the differential relationship α

 
1

cos cos

dm
ds dρ φ

α α
= =  (21) 

 

ISOMETRIC LATITUDE 

The isometric latitude is defined by the differential equation (19) from which we obtain 

 
1cos

q d
ρ

φ
ν φ

= ∫ C+  (22) 

where  is a constant of integration. 
1

C

Substituting into equation (22) expressions for ρ  and ν  given by equations (7) and (8), 

and simplifying gives 

 
( )

( )

2

12 2

1

1 sin cos

e
q

e
φ

φ φ

−
=

−∫ d C+  (23) 
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The integrand of equation (23) can be separated into partial fractions 

 
( )

( ) ( )

2

2 2 2 2

1

cos1 sin cos 1 sin

e A B

e e φφ φ φ

−
= +

− −
 (24) 

Expanding and simplifying equation (24) gives 

  (25) 

( )
( )

( ) ( )

2 2 2

2 2

2 2

1 cos 1 sin

cos 1 cos

1 cos

e A B e

A B Be

B e A Be

φ φ

φ φ

φ

− = + −

= + − −

= − + + cosφ

A and B are obtained by comparing the coefficients of  and  in equation 21 e− cosφ (25) 

giving 

  21; cosB A e φ= = −

Substituting these results into equation (24) gives the isometric latitude as 

 
2

12 2

1 cos
cos 1 sin

e
q d d

e

φ
φ

φ φ
= −

−∫ ∫ Cφ +

u

 (26) 

Put  then  and sin sine uφ = cos cose d udφ φ =

 

12

12

1

1 cos
cos 1 sin

1 cos
cos cos

1 1
cos cos

u
q d e du

u
u

d e du C
u

d e du C
u

φ
φ

φ
φ

φ
φ

= −
−

= − +

= − +

∫ ∫

∫ ∫

∫ ∫

C+

 (27) 

From standard integrals 
1

ln tan
cos 4 2

x
dx

x
π⎧ ⎫⎛ ⎞⎪ ⎪⎟⎪ ⎜ ⎟= +⎜⎨ ⎟⎜ ⎟⎪ ⎜⎝ ⎠⎪ ⎪⎩ ⎭

∫ ⎪⎬⎪
 and from half-angle trigonometric 

formula 
1 cos

tan
2 1 co
A A

A

⎛ ⎞ −⎟⎜ ⎟ = ±⎜ ⎟⎜ ⎟⎜ +⎝ ⎠ s
 giving 

( )
( )

1 cos 2 1 sin
tan

4 2 1 sin1 cos 2

xx x
xx

ππ

π

− +⎛ ⎞ +⎟⎜ ⎟+ = =⎜ ⎟⎜ ⎟⎜ −⎝ ⎠ + +
.  

Substituting these results into equation (27) gives the isometric latitude as 

 

1
2

2 3

1 sin
ln tan ln

4 2 1 sin
e

q C e
e

π φ φ
φ

⎛ ⎞ ⎛ ⎞+⎟ ⎟⎜ ⎜⎟ ⎟= + + − −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ −⎝ ⎠ ⎝ ⎠ 1
C C+  

where  are constants of integration.  Using the laws of logarithms: 

, 

1 2 3
,  and C C C

log
a a
MN M=log log N+

a
log log log

a a

M
M N

N
= −

a

1

 and lo , and 

defining a new constant of integration  gives 

g logp
a a
M p M=

2 3
C C C C= − +
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2

2

1 sin
ln tan ln

4 2 1 sin

1 sin
ln tan

4 2 1 sin

e

e

e
q C

e

e
C

e

π φ φ
φ

π φ φ
φ

⎛ ⎞ ⎛ ⎞−⎟ ⎟⎜ ⎜⎟ ⎟= + +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ +⎝ ⎠ ⎝ ⎠
⎧ ⎫⎪ ⎪⎪ ⎪⎛ ⎞⎛ ⎞−⎪ ⎟ ⎟⎪ ⎜ ⎜⎟ ⎟= + +⎜ ⎜⎨ ⎟ ⎟⎜ ⎜⎟ ⎟⎪ ⎜ ⎜ ⎪+⎝ ⎠⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

+

⎪⎪⎬  (28) 

The constant C in equation (28) equals zero since if  then  and the isometric 

latitude q is obtained from 

0φ = 0q =

 
21 sin

ln tan
4 2 1 sin

e

e
q

e
π φ φ

φ

⎧ ⎫⎪ ⎪⎪ ⎪⎛ ⎞⎛ ⎞−⎪ ⎟⎪ ⎜ ⎜⎟= +⎜ ⎜⎨ ⎟⎜ ⎜⎟ ⎟⎪ ⎜ ⎜ +⎝ ⎠⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

⎪⎟ ⎪⎟ ⎬⎟ ⎪

q

q

α

1

 (29) 

This derivation follows Lauf (1983) where an integral identical to equation (22) is 

evaluated as part of the derivation of the equations for the ellipsoidal Mercator projection 

– a conformal projection of the ellipsoid.  Thomas (1952) derives a similar equation in his 

development of conformal representation of the ellipsoid upon a plane. 

 

THE EQUATION OF THE LOXODROME 

By re-arranging equation (20) we have 

  tand dλ α=

and integrating both sides, noting that  is a constant, gives tanα

  

( )

2 2

1 1

2 1 2 1

tan

tan

q

q

d d

q q

λ

λ

λ α

λ λ α

=

− = −

∫ ∫

And the equation of the loxodrome between  and  on the ellipsoid is 
1

P
2

P

  (30) tanqλΔ = Δ

where  are differences in longitude and isometric latitude 

respectively and α  is the (constant) azimuth of the loxodrome. 
2 1 2

 and q q qλ λ λΔ = − Δ = −
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THE AZIMUTH OF A LOXODROME 

The azimuth α  of a loxodrome between  and  on an ellipsoid can be obtained from 

equation 
1

P
2

P

(30) as 

 2 1

2 1

arctan arctan
q q

λ λλ
α

⎛ ⎞⎛ ⎞ −Δ ⎟⎜⎟⎜ ⎟⎟ ⎜= =⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎟⎜Δ −⎝ ⎠ ⎝ ⎠q

1

 (31) 

where  are isometric latitudes of  and  respectively and q is given by equation 
1 2
,q q

1 2
,λ λ

1
P

2
P

(29).   are the longitudes of  and . 
1

P
2

P

 

DISTANCE ALONG A LOXODROME 

Consider a loxodrome of constant azimuth α  that crosses the equator and passes through 

 and .  The distance s between  and  can be defined as  where  and 

 are distances from the equator to  and  respectively and from equations 
1

P

2
s

2
P

1
P

1
P

2

2

P

P
2

s s s= −
1

s

(21) and 

(7) we may write 

 
( )1 12

1
1 3

0 0

11 1
cos cos cos

a e m
s d d

W

φ φ

ρ φ φ
α α

−
= = =∫ ∫ α

 (32) 

and similarly 

 2
2 cos

m
s

α
=  (33) 

1
m  and  are meridian distances and meridian distance m is defined as the length of the 

arc of the meridian to a point in latitude φ .  m is obtained from the differential 

relationship given by equation 

2
m

(17) and  

 ( ) ( ) ( )
3

2 2 2 22
3

0 0 0

1
1 1 sin 1m d a e e d a e

W

φ φ φ

ρ φ φ φ φ
−

= = − − = −∫ ∫ ∫ d  (34) 

This is an elliptic integral of the second kind and cannot be evaluated directly; instead, the 

integrand ( )
3

2 2 2
3

1
1 sine

W
φ

−
= −  is expanded by using the binomial series and then 

evaluated by term-by-term integration.  Following Deakin & Hunter (2008) we obtain an 

expression for the meridian distance as 

 { }0 2 4 6 8 10sin 2 sin 4 sin 6 sin 8 sin10m a A A A A A Aφ φ φ φ φ φ= − + − + − +"  (35) 

where 
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2 4 6 8 10
0

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

1 3 5 175 441
1

4 64 256 16384 65536
3 1 15 35 735
8 4 128 512 16384
15 3 35 105
256 4 64 256
35 5 315

3072 4 256
315 7

131072 4

A e e e e e

A e e e e e

A e e e e

A e e e

A e e

= − − − − − +

⎛ ⎞⎟⎜= + + + + + ⎟⎜ ⎟⎝ ⎠
⎛ ⎞⎟⎜= + + + + ⎟⎜ ⎟⎝ ⎠
⎛ ⎞⎟⎜= + + + ⎟⎜ ⎟⎝ ⎠

= + +

"

"

"

"

"

( )10
10

693
131072

A e

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎝ ⎠

= +"

 (36) 

Combining equations (32) and (33) gives the length of the loxodrome between  and  

as 
1

P
2

P

 2

cos

m m
s

α
−

= 1

1

 (37) 

where α  is the (constant) azimuth and  and  are meridian distances for  and  

obtained from equation 
1

m
2

m
1

φ
2

φ

(35). 

 

THE DIRECT PROBLEM OF THE LOXODROME ON THE ELLIPSOID 

The direct problem is: Given latitude and longitude of , azimuth  of the loxodrome 

 and the arc length s along the loxodrome curve; compute the 

latitude and longitude of  and the reverse azimuth . 

1
P

12
α

1 2
PP

2
P

21
α

With the ellipsoid constants  and given  and s the problem may be 

solved by the following sequence. 

2, , and a f e
1 1 12
, ,φ λ α

 

1. Compute  the meridian distance of  using equation 
1

m
1

P (35). 

2. Compute meridian distance  from equation 
2

m (37) where 

  
2 12

cosm s mα= +

3. Use Newton-Raphson iteration to compute latitude  using equation 
2

φ (35) re-

arranged as 

  ( ) { }0 2 4 6 8 10
sin2 sin 4 sin6 sin 8 sin10 0f a A A A A A A mφ φ φ φ φ φ φ= − + − + − − =
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 and the iterative equation ( ) ( )
( )( )
( )( )1

n

n n

n

f

f

φ
φ φ

φ
+

= −
′

 where ( ) ( ){d
f f

d
φ φ

φ
′ = }

φ

) )

1

λ

1

 and 

  ( ) { }0 2 4 6 8 10
2 cos2 4 cos 4 6 cos6 8 cos 8 10 cos10f a A A A A A Aφ φ φ φ φ′ = − + − + −

 An initial value of  (  for ) can be taken as the latitude of  and the 

functions  and  evaluated using .   (  for ) can now be 

computed from the iterative equation and this process repeated to obtain values 

.  This iterative process can be concluded when the difference between 

 and  reaches an acceptably small value. 

( )1φ

f ′

φ

( )( 1
φ

1n =
1

P

( )( 1
f φ

( )n
φ

1
φ ( )2φ φ 2n =

( ) ( )3 4
, ,φ φ …

( )1n
φ

+

4. Compute isometric latitudes  and  using equation 
1

q

2 1
q−

2
q (29) and then the difference in 

isometric latitudes  q qΔ =

5. Compute the difference in longitude  from equation 
2

λ λ λΔ = − (30) 

6. Compute longitude  from  
2

λ
2 1

λ λ= +Δ

7. Compute reverse azimuth from  
21 12

180α α= ± D

 

THE INVERSE PROBLEM OF THE LOXODROME ON THE ELLIPSOID 

The inverse problem is: Given latitudes and longitudes of  and  on the ellipsoid, 

compute the azimuth  of the loxodrome , the arc length s 

along the loxodrome curve and the reverse azimuth . 

1
P

2
P

12
α

1 2
PP

21
α

With the ellipsoid constants  and given  and  the problem may be 

solved by the following sequence. 

2, , and a f e
1 1
,φ λ

2 2
,φ λ

1. Compute isometric latitudes  and  using equation 
1

q

2 1
q−

2
q (29) and then the difference in 

isometric latitudes  q qΔ =

2. Compute the longitude difference  and then the azimuth  using 

equation 
2

λ λ λΔ = −
12

α

(31). 

3. Compute meridian distances  and  using equation 
1

m
2

m (35). 

4. Compute the arc length s from equation (37). 

5. Compute reverse azimuth from  
21 12

180α α= ± D
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MATLAB FUNCTIONS 

A MATLAB function loxodrome_inverse.m is shown below.  This function computes the 

inverse problem of the loxodrome on the ellipsoid. 

Output from the function is shown below for points on a great elliptic arc between the 

terminal points of the straight-line section of the Victorian–New South Wales border.  This 

straight-line section of the border, between Murray Spring and Wauka 1978, is known as 

the Black-Allan Line in honour of the surveyors Black and Allan who set out the border 

line in 1870-71.  Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast 

at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of 

the Murray River that is closest to Cape Howe.  The straight line is a normal section curve 

on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the 

normal to the ellipsoid at Murray Spring.  The GDA94 coordinates of Murray Spring and 

Wauka 1978 are: 
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′′

′′
  

Murray Spring: 37 47 49.2232 148 11 48.3333

Wauka 1978: 37 30 18.0674 149 58 32.9932

φ λ

φ λ

′ ′′ ′−
′ ′′ ′−

D D

D D

The normal section azimuth and distance are: 

  116 58 14.173757 176495.243760 m′ ′′D

The geodesic azimuth and distance are: 

  116 58 14.219146 176495.243758 m′ ′′D

The loxodrome azimuth and distance are: 

  116 26 08.400701 176497.829952 m′ ′′D

Figure 4 shows a schematic view of the Black-Allan line (normal section) and the great 

elliptic arc.  The relationships between the great elliptic arc and the normal section have 

been computed at seven locations along the line (A, B, C, etc.) where meridians of 

longitude at 0 1  intervals cut the line.  These relationships are shown in Table 1. 5′D
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BLACK-ALLAN LINE:  VICTORIA/NSW BORDER

The Black-Allan Line is a normal section curve
on the reference ellipsoid between P1 (Murray 
Spring) and P2 (Wauka 1978).  This curve is the 
intersection of the normal section plane and the 
ellipsoid, and the normal section contains P1,
the normal to the ellipsoid at P1, and P2.

The GDA94 coordinates of Murray Spring and 
Wauka 1978 are:
Murray Spring:  -37°47’49.2232”   148°11’48.3333”
Wauka 1978

φ λ
:     -37°30’18.0674”   149°58’32.9932”

The normal section azimuth and distance are: 
116°58’14.173757” 176495.243760 m.

The geodesic azimuth and distance are: 
116°58’14.219146” 176495.243758 m.

The loxodrome azimuth and distance are: 
116°26’08.400701” 176497.829952 m.

φ λ

149°45’

149°30’

149°15’

149°00’

148°45’

148°30’

148°15’ Loxodrome

Normal Section

The loxodrome is shown plotted at an exaggerated scale with respect to the 
Border Line (normal section).
At longitude 149°00’E. the loxodrome is 457.918 m north of the Border Line.  
At longitude 149°30’E. the loxodrome is 361.250 m north of the Border Line.  

Figure 4 

 

 

BLACK-ALLAN LINE:  VICTORIA/NSW BORDER 
 

GDA94 Ellipsoid values NAME 
LATITUDE LONGITUDE dφ ρ dm = ρ×dφ 

Murray 
Spring -36°47΄49.223200˝ 148°11΄48.333300˝    

A -36°49΄07.598047˝ N 
-36°49΄05.849245˝ Lox 

148°15΄00.000000˝  
+00΄01.748802˝ 

6358356.102  
+53.9089 

B -36°55΄13.876510˝ N 
-36°55΄05.371035˝ Lox 148°30΄00.000000˝  

+00΄08.505475˝ 6358465.209  
+262.1958 

C -37°01΄17.289080˝ N 
-37°01΄04.418599˝ Lox 148°45΄00.000000˝  

+00΄12.870481˝ 6358573.577  
+396.7613 

D -37°07΄17.845554˝ N 
-37°07΄02.991484˝ Lox 149°00΄00.000000˝  

+00΄14.854070˝ 6358681.204  
+457.9177 

E -37°13΄15.555723˝ N 
-37°13΄01.089240˝ Lox 149°15΄00.000000˝  

+00΄14.466483˝ 6358788.089  
+459.9767 

F -37°19΄10.429372˝ N 
-37°18΄58.711427˝ Lox 149°30΄00.000000˝  

+00΄11.717945˝ 6358894.232  
+361.2501 

G -37°25΄02.476276˝ N 
-37°24΄55.857608˝ Lox 149°45΄00.000000˝  

+00΄06.618668˝ 6358999.632  
+204.0489 

Wauka 
1978 -37°30΄18.067400˝ 149°58΄32.993200˝    

 
TABLE 1: Points where the Great Elliptic Arc cuts meridians of A, B, C, etc at 0°15΄ intervals of 
longitude along Border Line.  N = Normal Section, Lox = Loxodrome 
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>> help loxodrome_inverse 
  
  loxodrome_inverse:  This function computes the inverse case for a  
    loxodrome on the reference ellipsoid.  That is, given the latitudes and  
    longitudes of two points on the ellipsoid, compute the azimuth and the  
    arc length of the loxodrome on the surface. 
 
>> loxodrome_inverse 
 
======================= 
Loxodrome: Inverse Case 
======================= 
Ellipsoid parameters 
a  = 6378137.0000 
f  = 1/298.257222101 
 
Terminal points of curve 
Latitude  P1 =  -36 47 49.223200 (D M S) 
Longitude P1 =  148 11 48.333300 (D M S) 
 
Latitude  P2 =  -37 30 18.067400 (D M S) 
Longitude P2 =  149 58 32.993200 (D M S) 
 
isometric lat  P1 =  -39 23 36.268670 (D M S) 
isometric lat  P2 =  -40 16 40.540366 (D M S) 
 
diff isometric lat  P2-P1 =   -0 53  4.271697 (D M S) 
diff in longitude P2-P1   =    1 46 44.659900 (D M S) 
 
meridian distance P1 =  -4073983.614420 
meridian distance P2 =  -4152559.155874 
 
diff in mdist P2-P1  =    -78575.541454 
 
Azimuth of loxodrome P1-P2 
Az12  = 116 26  8.400701  (D M S) 
 
loxodrome distance P1-P2 
s =    176497.829952 
 
>> 
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MATLAB function loxodrome_inverse.m 

 
function loxodrome_inverse 
% 
% loxodrome_inverse:  This function computes the inverse case for a  
%   loxodrome on the reference ellipsoid.  That is, given the latitudes and  
%   longitudes of two points on the ellipsoid, compute the azimuth and the  
%   arc length of the loxodrome on the surface. 
  
%-------------------------------------------------------------------------- 
% Function:  loxodrome_inverse() 
% 
% Usage:     loxodrome_inverse 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  5 October 2009 
%            Version  1.1 11 January 2010 
% 
% Purpose:   This function computes the inverse case for a loxodrome on the  
%   reference ellipsoid.  That is, given the latitudes and longitudes of  
%   two points on the ellipsoid, compute the azimuth and the arc length of  
%   the loxodrome on the surface. 
% 
% Functions required:   
%  [D,M,S] = DMS(DecDeg) 
%   isolat = isometric(flat,lat) 
%    mdist = meridian_dist(a,flat,lat) 
%         
% Variables:  
%  Az12     - azimuth of loxodrome P1-P2 (radians) 
%  a        - semi-major axis of spheroid 
%  d2r      - degree to radian conversion factor 57.29577951... 
%  disolat  - difference in isometric latitudes (isolat2-isolat1) 
%  dlon     - difference in longitudes (radian) 
%  dm       - difference in meridian distances (dm = m2-m1) 
%  e        - eccentricity of ellipsoid 
%  e2       - eccentricity of ellipsoid squared 
%  f        - f = 1/flat is the flattening of ellipsoid 
%  flat     - denominator of flattening of ellipsoid 
%  isolat1  - isometric latitude of P1 (radians) 
%  isolat2  - isometric latitude of P2 (radians) 
%  lat1     - latitude of P1 (radians) 
%  lat2     - latitude of P2 (radians) 
%  lon1     - longitude of P1 (radians) 
%  lon2     - longitude of P2 (radians) 
%  lox_s    - distance along loxodrome 
%  m1,m2    - meridian distances of P1 and P2 (metres) 
%  pion2    - pi/2 
% 
% Remarks: 
% 
% References: 
%  [1] Deakin, R.E., 2010, 'The Loxodrome on an Ellipsoid', Lecture Notes,  
%         School of Mathematical and Geospatial Sciences, RMIT University,  
%         January 2010 
%  [2] Bowring, B.R., 1985, 'The geometry of the loxodrome on the 
%         ellipsoid', The Canadian Surveyor, Vol. 39, No. 3, Autumn 1985, 
%         pp.223-230. 
%  [3] Snyder, J.P., 1987, Map Projections-A Working Manual.  U.S. 
%         Geological Survey Professional Paper 1395.  Washington, DC: U.S. 
%         Government Printing Office, pp.15-16 and pp. 44-45. 
%  [4] Thomas, P.D., 1952, Conformal Projections in Geodesy and 
%         Cartography, Special Publication No. 251, Coast and Geodetic 
%         Survey, U.S. Department of Commerce, Washington, DC: U.S. 
%         Government Printing Office, p. 66. 
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% 
%-------------------------------------------------------------------------- 
  
% Degree to radian conversion factor 
d2r   = 180/pi; 
  
% Set ellipsoid parameters 
a    = 6378137;    % GRS80 
flat = 298.257222101; 
 
% Set lat and long of P1 and P2 on ellipsoid 
lat1 = -(36  + 47/60 + 49.2232/3600)/d2r;   % Spring 
lon1 =  (148 + 11/60 + 48.3333/3600)/d2r; 
lat2 = -(37  + 30/60 + 18.0674/3600)/d2r;    % Wauka 1978 
lon2 =  (149 + 58/60 + 32.9932/3600)/d2r; 
 
% Compute isometric latitude of P1 and P2 
isolat1 = isometric(flat,lat1); 
isolat2 = isometric(flat,lat2); 
  
% Compute changes in isometric latitude and longitude between P1 and P2 
disolat = isolat2-isolat1; 
dlon = lon2-lon1; 
  
% Compute azimuth 
Az12 = atan2(dlon,disolat); 
  
% Compute distance along loxodromic curve 
m1 = meridian_dist(a,flat,lat1); 
m2 = meridian_dist(a,flat,lat2); 
dm = m2-m1; 
lox_s  = dm/cos(Az12); 
  
%----------------------- 
% Print result to screen 
%----------------------- 
fprintf('\n======================='); 
fprintf('\nLoxodrome: Inverse Case'); 
fprintf('\n======================='); 
fprintf('\nEllipsoid parameters'); 
fprintf('\na  = %12.4f',a); 
fprintf('\nf  = 1/%13.9f',flat); 
  
fprintf('\n\nTerminal points of curve'); 
% Print lat and lon of Point 1 
[D,M,S] = DMS(lat1*d2r); 
if D == 0 && lat1 < 0 
    fprintf('\nLatitude  P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude  P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon1*d2r); 
if D == 0 && lon1 < 0 
    fprintf('\nLongitude P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLongitude P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
% Print lat and lon of point 2 
[D,M,S] = DMS(lat2*d2r); 
if D == 0 && lat1 < 0 
    fprintf('\n\nLatitude  P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\n\nLatitude  P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(lon2*d2r); 
if D == 0 && lon2 < 0 
    fprintf('\nLongitude P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
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    fprintf('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end 
  
% Print isometric latitudes of P1 and P2 
[D,M,S] = DMS(isolat1*d2r); 
if D == 0 && isolat1 < 0 
    fprintf('\n\nisometric lat  P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\n\nisometric lat  P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(isolat2*d2r); 
if D == 0 && isolat2 < 0 
    fprintf('\nisometric lat  P2 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nisometric lat  P2 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
  
% Print differences in isometric latitudes and longitudes 
[D,M,S] = DMS(disolat*d2r); 
if D == 0 && disolat < 0 
    fprintf('\n\ndiff isometric lat  P2-P1 =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\ndiff isometric lat  P2-P1 = %4d %2d %9.6f (D M S)',D,M,S); 
end     
[D,M,S] = DMS(dlon*d2r); 
if D == 0 && dlon < 0 
    fprintf('\ndiff in longitude P2-P1   =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\ndiff in longitude P2-P1   = %4d %2d %9.6f (D M S)',D,M,S); 
end     
  
% Print meridian distances of P1 and P2 
fprintf('\n\nmeridian distance P1 =  %15.6f',m1); 
fprintf('\nmeridian distance P2 =  %15.6f',m2); 
fprintf('\n\ndiff in mdist P2-P1  =  %15.6f',dm); 
  
% Print azimuth of loxodrome 
fprintf('\n\nAzimuth of loxodrome P1-P2'); 
[D,M,S] = DMS(Az12*d2r); 
fprintf('\nAz12  = %3d %2d %9.6f  (D M S)',D,M,S); 
  
% Print loxodrome distance P1-P2 
fprintf('\n\nloxodrome distance P1-P2'); 
fprintf('\ns =  %15.6f',lox_s); 
  
fprintf('\n\n'); 
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MATLAB function isometric.m 

 
function isolat = isometric(flat,lat) 
% 
% isolat=isometric(flat,lat)  Function computes the isometric latitude 
%   (isolat) of a point whose latitude (lat) is given on an ellipsoid whose  
%   denominator of flattening is flat. 
%   Latitude (lat) must be in radians and the returned value of isometric 
%   latitude (isolat) will also be in radians. 
%   Example: isolat = isometric(298.257222101,-0.659895044028705); 
%            should return isolat = -0.709660227088983 radians, 
%            equal to -40 39 37.9292417795658 (DMS) for latitude equal to 
%            -0.659895044028705 radians (-37 48 33.1234 (DMS)) on the GRS80 
%            ellipsoid. 
  
%-------------------------------------------------------------------------- 
% Function:  isometric(flat,lat) 
% 
% Syntax:    isolat = isometric(flat,lat); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  5 October 2009 
% 
% Purpose:   Function computes the isometric latitude of a point whose  
%  latitude is given on an ellipsoid defined by semi-major axis (a) and  
%  denominator of flattening (flat). 
% 
% Return value: Function isometric() returns isolat (isometric latitude in 
%  radians) 
% 
% Variables:  
%  e      - eccentricity of ellipsoid 
%  e2     - eccentricity-squared 
%  f      - flattening of ellipsoid 
%  flat   - denominator of flattening 
% 
% Remarks:    
%  Isometric latitude is an auxiliary latitude proportional to the spacing 
%  of parallels of latitude on an ellipsoidal Mercator projection. 
%   
% References: 
%  [1] Snyder, J.P., 1987, Map Projections-A Working Manual.  U.S. 
%         Geological SurveyProfessional Paper 1395.  Washington, DC: U.S. 
%         Government Printing Office, pp.15-16. 
% 
% 
%-------------------------------------------------------------------------- 
  
% compute flattening f eccentricity squared e2 
f   = 1/flat; 
e2 = f*(2-f); 
e  = sqrt(e2); 
  
x = e*sin(lat); 
y = (1-x)/(1+x); 
z = pi/4 + lat/2; 
  
% calculate the isometric latitude 
isolat = log(tan(z)*(y^(e/2))); 
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MATLAB function meridian_dist.m 

 
function mdist = meridian_dist(a,flat,lat) 
% 
% mdist = meridian_dist(a,flat,lat) Function computes the meridian distance 
%   on an ellipsoid defined by semi-major axis (a) and denominator of  
%   flattening (flat) from the equator to a point having latitude (lat) in  
%   radians. 
%   e.g. mdist = (6378137, 298.257222101, -0.659895044028705) will compute  
%   the meridian distance for a point having latitude -37 deg 48 min 
%   33.1234 sec on the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101). 
  
%-------------------------------------------------------------------------- 
% Function:  meridian_dist() 
% 
% Usage:     mdist = meridian_dist(a,flat,lat) 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  5 October 2009 
% 
% Purpose:   Function computes the meridian distance 
%   on an ellipsoid defined by semi-major axis (a) and denominator of  
%   flattening (flat) from the equator to a point having latitude (lat) in  
%   radians. 
% 
% Functions required:   
%         
% Variables: a         - semi-major axis of spheroid 
%            A,B,C...  - coefficients 
%            e2        - eccentricity squared 
%            e4,e6,... - powers of e2 
%            f         - f = 1/flat is the flattening of ellipsoid 
%            flat      - denominator of flattening of ellipsoid 
%            mdist     - meridian distance 
% 
% Remarks:   The formulae used are given in Baeschlin, C.F., 1948, 
%            "Lehrbuch Der Geodasie", Orell Fussli Verlag, Zurich, pp.47-50. 
%            See also Deakin, R. E. and Hunter M. N., 2008, "Geometric 
%            Geodesy - Part A", Lecture Notes, School of Mathematical and 
%            geospatial Sciences, RMIT University, March 2008, pp. 60-65. 
%   
%-------------------------------------------------------------------------- 
  
% compute eccentricity squared 
f  = 1/flat; 
e2 = f*(2-f); 
  
% powers of eccentricity 
e4  = e2*e2; 
e6  = e4*e2; 
e8  = e6*e2; 
e10 = e8*e2; 
  
% coefficients of series expansion for meridian distance 
A = 1+(3/4)*e2+(45/64)*e4+(175/256)*e6+(11025/16384)*e8+(43659/65536)*e10; 
B = (3/4)*e2+(15/16)*e4+(525/512)*e6+(2205/2048)*e8+(72765/65536)*e10; 
C = (15/64)*e4+(105/256)*e6+(2205/4096)*e8+(10395/16384)*e10; 
D = (35/512)*e6+(315/2048)*e8+(31185/131072)*e10; 
E = (315/16384)*e8+(3465/65536)*e10; 
F = (693/131072)*e10; 
  
term1 = A*lat; 
term2 = (B/2)*sin(2*lat); 
term3 = (C/4)*sin(4*lat); 
term4 = (D/6)*sin(6*lat); 
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term5 = (E/8)*sin(8*lat); 
term6 = (F/10)*sin(10*lat); 
  
mdist = a*(1-e2)*(term1-term2+term3-term4+term5-term6); 
 
 
 

MATLAB function DMS.m 

 
function [D,M,S] = DMS(DecDeg) 
% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees and returns 
%   Degrees, Minutes and Seconds 
  
val = abs(DecDeg); 
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
if(DecDeg<0) 
  D = -D; 
end 
return 
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