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FOREWORD

These notes are the second part of an introduction to ellipsoidal geometry related to
geodesy. They are mainly concerned with the computation of distance and direction
between points on a reference ellipsoid. The Earth's terrestrial surface is highly irregular
and unsuitable for any mathematical computations, instead an ellipsoid — a surface of
revolution created by rotating an ellipse about its minor axis — is adopted and points on
the Earth's surface are projected onto the ellipsoid, via a normal to the ellipsoid. All

computations are made using these projected points on this reference ellipsoid.

These notes are intended for undergraduate students studying courses in surveying,
geodesy and map projections. The derivations of equations given herein are detailed, and
in some cases elementary, but they do convey the vital connection between geodesy and

the mathematics taught to undergraduate students.

These notes are a collection of papers written by the authors on the topic of computation
of distance and azimuth between points on the reference ellipsoid. There are five lines or
curves of interest in geodesy: the geodesic which is the curve of shortest length; the normal
section curve; the curve of alignment; the great elliptic arc; and the loxodrome. The most
important is of course the geodesic since it is the shortest distance between two points, but
the other curves have their uses in navigation (the loxodrome) and in field surveying

(normal section and curve of alignment).

The methods of computation outlined in these papers have been developed with the
computer in mind — perhaps with the exception of F. W. Bessel's paper of 1826 — and most

have MATLAB functions that demonstrate the application of the methods.

There is a certain amount of repetition in the papers as they are separate documents
intended to give the reader an overview of the particular geodetic problem and then a
detailed solution with computer examples of algorithms. So the student will see repeated
treatments of the ellipsoid and associated formula as well as various solutions of the direct
and inverse problems of geodesy. But, there may be something useful within the detail for

the interested reader.
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The calculation of longitude and latitude from geodesic measurements*

F. W. Bessel

Konigsberg Observatory

(Originally published: October 1825; translated: August 13, 2009)

1. INTRODUCTION

Consider a geodesic line between two poidtand B on
the surface of the Earth. Given the positionfthe length of

the line and its azimuth at, we wish to determine the posi-
tion of B and the azimuth of the line there. This problem oc-
curs so frequently that | undertook to construct tablesn® si

plify the computation. In order to explain the method clgdrl
start by deriving the fundamental properties of geodesisli
on a spheroid of revolution.

the radius of the circle of latitude be and the meridional
radius of curvature by; then we find

dr

dscosa = —Rdp = ——,
¢ sin ¢ Q)

dssina = —r dw,

which gives

ds = v/ R2d¢p? + r? dw?.

Even though aspects of this

derivation may already be well known, the benefit of havinglf we write p for d¢/dw andU for \/R%p? + r2, this becomes
the entire development presented together outweighs tte co

of repeating itt

2. THE CHARACTERISTIC EQUATION FOR A GEODESIC

Take two points4 and B on the surface on a spherdid

of revolution joined by some specified curve. Consider tWo, nare the integration is from to B.

neighboring points on the curve with latitudesand ¢ + d¢
and longitudes relative td of w andw + dw (measuring east
positive). Let the distance between themibgethe azimuth of

line directed toward! bea (measured clockwise from north),

*This is an English translation &fber die Berechnung der geographischen

Langen und Breiten aus geodatischen Vermessyngstronomische Nach-
richten 4(86), 241-254 (1826), dbi:10.1002/asna.18260041601. pEper
also appears iAbhandlungen von Friedrich Wilhelm Bessél. 3, pp. 5-
14 (W. Engelmann, Leipzig, 1876). The translation has beepgred and
edited by Charles F. F. Karn€gkarney@sarnoff.cojmrand Rodney E. Deakin

(rod.deakin@rmit.edu.gu with the assistance of Max Hunter and Stephan

Brunner. The mathematical notation has been updated t@mconi cur-

rent conventions and, in a few places, the equations have feegranged

for clarity. Several errors have been corrected, a figurebleas included,

and the tables have been recomputed. A transcription ofrilgenal paper

with the updated mathematical notation and with the cooestis available

at/arXiv:0908.1823. A contemporary, but partial, traniskainto English ap-

peared in Quart. Jour. Roy. In&1(41), 138-152 (1826).

1In Secs[PH, Bessel gives a concise summary of the work efalesther
authors, notably, Clairaut, du Séjour, Legendre, andrdriBessel’s con-
tributions, which start in SeE] 5, consist of his methodsefqpanding the
distance and longitude integrals and his compilation oetln provide a
practical method for computing geodesics. Two sentences len omit-
ted from this translation of the introduction. In one, Béseéers to two
letters he published earlier in tlestronomische Nachrichtemhich do not,
however, have a direct bearing on the present work. In therokte criti-
cizes "du Séjour’s method,” but without providing detailsany case, such
criticism is misplaced because du Séjour had died over asyaarlier and
Bessel does not cite more recent work.

2“Spheroid” here is used in the sense of a shape approximatisghere.
Sectiong P and]3 treat the case of a rotationally symmetrth.em Sec[#,
Bessel specializes to a rotationally symmetric ellipsoid.

ds = U dw.
The distance along the curve between the two poindsd B

is therefore
s = /wa,

If the curve is the
geodesic oshortestpath, then the relation betweenandw
must be such that the integral is a minimum. If we perturb this
relation so tha is replaced by + z wherez is an arbitrary
function ofw which vanishes at the end points (because these
points lie on both curves), then the perturbed length,

s’z/U’dw7

must be larger thanfor all z.
Expanding’ (¢, p) in a Taylor series, we obtain
ou oU dz

/7 _ _
U —U—l—a(bz—l-apdw—l-...

and therefore we have

s’—s—i—/ ('“)_UZ_’_B_U% dw +
B 0¢ dp dw Y

where we have explicitly included terms only up to first order
in z. For s to be a minimum, we require that

/ a—Uz—l-a—U% dw +
o dp dw v

3 The minus signs appear il (1) becausés the back azimuth, pointing to
A, while ds advances the geodesic away frofn In this section, Bessel
assumes an easterly geodesic sodidtiw > 0. However the final result,
Eqg. [2), is general.

4 The notation here employs partial derivatives instead afsBEs less for-
mal use of differentials.

.>0
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for all z. Since this must also hold # is replaced by—z
and since we can takeso small that the first order terms are
bigger that the sum of all the higher order terms (excep#f th
first order terms vanish), it follows that the condition thdite

minimum is
oU

Integrating the second term by parts to giv@U/dp) —
J 2[d(dU /dp)/dw] dw and remembering that vanishes at
the end points, we obtain

oUu

[ {56~ () fao=o

o6 dw
Since this integral must vanish farbitrary z, we finc®

ou  d <6U)

06 dw\ dp
or, multiplying byde¢/dw = p,

oU dz
dp dw

QU ds OUdp _dpoU _ d (0U\ _ g
Op dw  Opdw dw Op L op )
which on integrating with respect to become$
U —p<d—U> = const.
dp

Substituting,/r2 + R2p?2 for U, we obtairf

r

= —rsina = const.,

which is the well known characteristic equation of the geo-

desic.
If the azimuth of the geodesic dt(in the direction ofB) is
o' and the distance of from the rotation axis is’, we have

r’ sin(a’ + 180°) = rsin a,
or

r'sina/ = —rsina.

(2)

3. THE AUXILIARY SPHERE

Figure 1 Spherical triangles on the auxiliary sphefeAB is the
geodesic,N is the pole;EF G is the equator; and&VE, NAF, and
NBG are meridians.

and equatior{2) becomes

cosu’sina’ = — cosusina. 3)
This equation relates two sides of a spherical triafgle —
v’ and90° — u, and their opposite angle360° — « andc«’.
The third sides and its opposite angle will appear in the
following calculations giving elegant expressions for jihiat
variations ofs, v andw. In particular, using the well known
differential formulas of spherical trigonometry, we ftdd

du = — cosa do,

cosudw = —sinado.

Substituting these in equations (1) and expressingterms
of u gives

ds=a s?n Y do,
sin ¢
sinu )
dw = w.
sin ¢

4. THE EQUATIONS FOR A GEODESIC ON AN ELLIPSOID

I now assume that the meridian is an ellipse with equa-
torial semi-axisa, polar semi-axish, and eccentricitye =

Let the maximum distance of the spheroid to the rotationv’a? — b2/a.1* The equation for an ellipse expressed in terms

axis bea, so thatr andr’ are less than or equal tg we can
then writé

/ /
r’ =acosu, T =acosu,

5 This is the Euler-Lagrange equation of the calculus of tiaris.

6 This is now known as the Beltrami identity.

7A. C. Clairaut gives a geometric derivation of this resultNtem. de
I'’Acad. Roy. des Sciences de Paris, 1733, 406-416 (1735) efjuation
also follows from conservation of angular momentum for a srelgling
without friction on a spheroid of revolution.

8 The quantityu is thereducedor parametriclatitude.

9 See the trianglel BN on the “auxiliary sphere” in Fid]1; Equatiobl (3) is
the sine rule applied to anglesand B of the triangle.

10 Here and in the rest of the paper, the differentials give tlowement of
point B along the geodesic defined with poittanda’ held fixed.

11 |n Bessel's time, it was known that the earth could be appnetéd by an
oblate ellipsoid,a > b, but the eccentricity had not been determined ac-
curately. Therefore, Bessel computes tables which arécapp¢ to oblate
ellipsoids with a range of eccentricities. However, théeseexpansions
that Bessel obtaind,_(IL1) arid[12), can also to applied taterellipsoids,

a < b, by allowinge? < 0.
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of cartesian coordinates is Equations[(B) then becortfe
1’2 2 . .
_2+y_2:1_ sinu = cosmsin(M + o),
) o ) “ _b ) cosucosa = —cosmcos(M + o), (8)
Differentiating this and settindy/dxz = — cot ¢, we obtain . .
cosusmae = — smmm.
rsing  ycos¢ o
2 2 0; This gives
eliminatingy between these equations then gives cos?u = 1 — cos® msin*(M + o),
T = w, and the equation fats becomes
V1 —e2sin? ¢
The quantityz is the same as = a cosu, which gives the ds =a\/1— €2 \/1 + k2sin®*(M + o) do, 9)
relationships betweesi andu,
. where
cosu= B0 pgpo CSUVIZE L ccosm
V1 —e2sin? ¢ V1 —e?cos?u Nk
novi1— e2 i - . . . .
Sinu = M, sing = —— % This differential equation may be integrated in terms of the
1 —e2sin¢ V1 —e?cos?u elliptic integrals introduced by LegendteBecause the tools
\/—2 tanu to compute these special functions are not yet sufficierty v
tanu = tangy1—e?,  tang = Nir=a satilel® we instead develop a series solution which converges
q rapidly because? is so small. We readily achieve this by de-
an . composing the term under the square root into two complex
SIU_ T 2 eos? factors, namely/
sin ¢
Substituting this into[]4)_, we obtain the differential etjoas ds = aY 1—¢? do
for a geodesic on an ellipsoid 1—e€
ds = av/1 = Fcos? udo, o V1= cexp(2i(M +0)) /1~ coxp(~2i(M +0)
dw = /1 — e2 cos? u dw. where
VI+EZ -1 2\/€
€= —o-——, k=-—"—.
5. THE DISTANCE INTEGRAL V1+EkE24+1 1—e€

| useExpanding the two factors in the radicals in infinite seried a

To integrate the first of these differential equations, S .
multiplying the results give§

the three relations betweet, u, o/, a ando,1?

. . 12 ! !

sinu = sinu’ coso + cosu’ cosa’ sin o, T 2
—cosucosa = —sinu'sino + cosu’ cosa’ cosa,  (6) ds=a 1—¢ do[A —2Bcos2(M +0)
—cosusina = cosu’sina’. —2Ccos4(M + o) — 2D cos6(M + o) — .. ],

It is convenient to write these in terms of the auxiliary &gl
m andM defined by®

< I __ Q 3

sinu’ = cosmsin M, 14 These are analogs of Eds] (7) with meridisiA F' replaced byNBG.

cosu’ cosa’ = cosm cos M, (7 15A. M. Legendre, Exercices du calcul integral\Vol. 1 (Courcier, Paris,
1811).

16 Even though good numerical algorithms for elliptic intdgrare available,
these usually require linking to an additional library afwat, that reason,
computations of geodesics are still usually in terms of &ser

17 The notation has been simplified here compared to Bessétdjmar for-

cosu sina’ = sinm.

12 Referring to Fig[lL, consider two central cartesian coatirsystems with mulation in WTChk ande are expressed in terms afthroughk = tan £
the zy plane containing the geodesiéA B, and either4 or B lying on ande = tan® ; . By usinge as the expansion parameter and by dividing
the z axis. Equations[{6) give the transformation between thedioo out Fhe chtorl — ¢, Bessel has ens_ured that the terms that he is expanding
nates of N in the two systemsisinu’, cosu’ cos o, cos u’ sin /] and are invariant under the transformatior— —e, M +o0 — n/2—(M+0).
[sinu, — cos u cos &, — cos usin a], namely a rotation by about thez This symmetry causes half the terms in the expansioagarvanish.
axis. 18 The use of complex exponentials facilitates the seriesresipas by avoid-

13 The auxiliary anglesn and M are an angle and a side of the spherical  ing the need to employ awkward trigonometric identities. wi write

. i ) . — _1_1, 11 2 1133 11354  _ i

triangle EAN shown in Fig[l. EquationEX7) are the sine rule on angles Vi-z=1-352—- 332 2.4.6% 24687 cee = Zj AT,
andF of triangle AEF, the cosine rule on anglE of triangle AEF, and then the coefficient ofos (21(M + o)) e/ +27 is a? fori = 0and2aja, 4,

the sine rule on angled and E of triangle ANE. forl > 0.


http://books.google.com/books?id=riIOAAAAQAAJ&printsec=titlepage

4

whereA, B, C, ... are given by The tables give the logarithrtfsof «, 3, andy as a function
of the argument
1 1-1- 3
A=1+ €+---, ecosm
2 logk = log ——
p_l 111, 3 1-e
T2 949 T o 4 6 2- 4 By this choice, the variation dbg 5 andlog v are very close
1135113 to two and four times that of the argument, which simplifies
2.4.6.82.4.6° interpolation into the tabl&:
O 1.1, 1131, 1-1-3-5 1-1 6 We takews/b as the first approximation of, substitute this
T94° T2462° " 246824° into the second term to obtain a second approximation, with
1 1 3 5.7 1-1- 3 which we recalculate the second term and add the third. The
T 246810246 7 convergence of the series is sufficiently fast that, evehef t
1-1-3 o 1.1-3-5 1 1.1-3.5-7 1-1 7 argument isl.1 (which is only possible if the flattening of
D = 2.4.6° 2.4.6.8 2 T 9.4681024° the ellipsoid,1 — b/a, exceedsl%), the approximation never
1-1-3-5.7.9 1-.1-3 needs to be carried further in order to keep the errors in
T 94681012 2.4.6 -, under0.001”. The term involving) does not excee@ 0005”
ote at this value of the argument.

Integrating the equation fats starting aic = 0, we obtain
b 7. ACCURACY OF THE TABLES
s =——[Ac — 2Bcos(2M + o) sino

l—e The values oflog a in the table are given to 8 decimal

— 2C cos(4M + 20)sin 20 places??> An error of half a unit of the last place results in

_ %D cos(6M + 30) sin 30 an error of only0.0005” or 0.008 toise over a distance corre-
sponding tar = 12°4’ or 700000 toise$® Similarly, | retain

- (10) only sufficient digits in the tabulation dbg 5 to ensure that

the error in this term is less thdn0005”; for this purpose, |
use 6 digits at the end of the table and fewer digits for smalle
values of the argument. The third term never excéetls’,
even at the end of the table; therefore | include only 3 decima
terms ofu/, o/, and o if, however, s and o’ have been Places foﬂggw..Thus the errors ai@001” for distances up to
measured and’ is known from the latitude a#, then o 700000 toises; even if the distance is of the order of a quarte

is obtained by solving{10). The latitude & and the az- meridian (i.e.p = 90°), the error s less tham01".
imuth of the geodesic there are found frdrh (8). Equafioh (10)
can be solved either by reverting the series or by successn@e AN EXAMPLE
approximation—the latter way is however the simplest if the
tables | have compiled are used.

| write®®

6. SOLVING THE DISTANCE EQUATION

The series[{10) gives the distanedetweenA and B in

In order to illustrate the use of the tables, | consider the
results from the great survey by von Miifflisg.Relative to

o= %s—l—ﬁcos(QM—i—a) sin o+ cos(4M + 20) sin 20

+ dcos(6M + 30)sin3o + ..., (11)
where 20 |n this paperlog z denotes the common logarithm (base 10) and we use
648000 1 colog x = log(1/z). The tables in the original paper contained a number
. — € of errors of one unit in the last place. These errors do nettife most
- T A part, affect the results obtained from the tables when redrtd0.001".
648 000 2B In addition, there were systematic errors in the tabulatdes oflog 3
8= - equivalent to a relative error of ordet in 8 which result in discrepancies
™ A from 1 to 17 units in the last place on the final page (the 6-iquortion)
648 000 C of the tables. In calculations involving logarithms, a baewa numeral
Y= T A’ indicates that that numeral should be negated, &g.0.02 ~ 2.3 =
648 000 2D (—2) + 0.3. In the original paper, logarithms are written modulo 1@, e.
5 = i log 0.02 = 8.3. The notation {—)” in these calculations indicates that the
T 3A° quantity whose logarithm is being taken is negative.
etc. 21 The columns headed give the first differences of the immediately pre-

ceding columns and aid in interpolating the data. Besseldvioave used
a table of “proportional parts” to compute the interpolatetlies.
22 \Working with 8-figure logarithms provides about 2 bits moregision than
|IEEE single precision floating point numbers.
19 The units fore, a, B, ... are arc seconds. Bessel here adopts a conflict?® The toise was a French unit of length. It can be converted tnsdy
ing notation for the coefficientv which should not be confused with the 1 toise = 864 ligne, 443.296 ligne = 1 m, or 1 toise ~ 1.949 m.
azimuth. 24 F K. F. von Miffling, Astron. Nachi2(27), 33—-38 (1824).
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Seeberg (pointl), the distance and azimuth to Dunkirk (point Adopting this as the first approximation to the valuerpfve

B) are?®
log s = 5.478 303 14,
o =274°21'3.18".

| assume the latitude of the Observatory at Seeberg to be

¢" = 50°56"6.7" and the ellipsoid parameters to be b =
6.513 354 64, log e = 2.905 4355.26
Fromtanu' = v/1 — e2 tan ¢’, we find

log tan ¢’ = 0.090 626 65

log /1 — €2 = 1.998 590 60

logtanu’ = 0.08921725; u' = 50°50"39.057".
Givenu’ andca’, we can computé/, cosm andsinm from
equations[{[7§/
logsinu’ = 1.889543 51
log cosu’ = 1.800 32627
log cos o’ = 2.880037 33
logsina’ = 1.998 746 62(—)

log(cosmsin M) = 1.889 54351
log(cos m cos M) = 2.680 363 60
log sinm = 1.799 072 89(—)
M = 86°27'53.949”; 2M = 172°55"47.9”
log cosm = 1.890 370 63 4M = 345° 51’ 36".

The argument in the tablelsg ((e/v/1 — €2) cosm), is

log = 2.906 845

e
V1—e2
log cosm = 1.890 371

Argument = 2.797 216.

Looking uplog « in the tables, and calculatings /b gives®

logav = 5.313998 92
colog b = 7.486 645 36
log s — 5.478 303 14

log % = 4.27894742; %s = 5°16' 48.481".

25 Seeberg50°56'N 10°44/E; Dunkirk: 51°2/N 2°23'E.,

26 In present-day units, this i ~ 6377 km, flattening f ~ 1/308.6, s ~
586 km. In this example, Bessel uses the toise as the unit of lengttiree
second as the unit of arc.

27 Bessel solves 3 equationid (7) for 2 unknowdsandm. The redundancy
serves as a check for the hand calculation and can also iephevaccu-
racy of the calculation, for example, in the case whenen ~ 1.

28 |t is necessary to use second differences when interpglatithe table for
log a. The argument2.797 216, lies ¢ = 0.7216 of the way between
2.79 and2.80. Bessel's central 2nd-order interpolation formula for et
6 digits oflog o gives401 284 4 q(—1941) + %q(q —1)(1853 — 1004 —
1028) = 399 892. For the other table look-ups, linear interpolation using
first differences suffices.

obtain the second by adding the first term in the sefigs (11),

log 8 = 2.305 94
log cos(2M + o) = 1.999 79(—)
logsino = 2.96391

1.26964(—) = —18.61".

We now update the value of this term with the second approx-

imation ofc = 5°16’48.5" — 18.6” = 5°16’29.9” and so
obtain as the third approximation:

log 3 = 2.305 94
log cos(2M + o) = 1.999 79(—)
logsino = 2.963 48

1.26921(—) = —18.587",

logy = 2.394
log cos(4M + 20) = 1.999
log sin 20 = 1.263

3.656 = +0.005".

Gathering the terms il(11) gives = 5°16'48.481" —
18.587"” + 0.005” = 5°16'29.899” and so, finally, we de-
terminea, u and¢ from equationd(8),

M + o = 91° 44 23.848"
logsin(M + o) = 1.999 799 71
log(— cos(M + o)) = 2.482 349 32
log cos m = 1.890 370 63
log(— sinm) = 1.799 07289

log sinu = 1.890 170 34
log(cosu cosa) = 2.372719 95
log(cos usina) = 1.799 072 89

logcot v = 2.57364706; « = 87°51'15.523"

logcosu = 1.799 377 50
log tanu = 0.090 792 84

colog v/1 —e? = 0.00140940

logtan ¢ = 0.09220224; ¢ = 51°2'12.719".

In this example, | carried out the trigonometric calculatido

8 decimals; however the tables ok «, log 5, andlog~ in
fact allow« and¢ to be determined slightly more accurately
than this. If only standard 7-figure logarithm tables arelava
able, the last digits in the tabulated valuedw@f, log 3, and
log v may be neglected.



9. THE LONGITUDE INTEGRAL From this, we see that neglectipgesults in an error of or-
der ¢® or an error inw of zze®s. This would not be dis-
We turn now to the determination of the longitude differ- cernible even in the calculation of long geodesics to 10-deci

encew by integrating[(), mal places?
Thus, for the present purposes, we may take 0 enabling
=1 —e?cos?udw. us to tabulate the integral in a way that is valid forall

This integral contains two separate constantande, which

cannot be combined. Thus it not possible to construct tables 10. SERIES EXPANSION FOR LONGITUDE
allow a rigorous solution of this problem which are valid for

arbitrarye.?® However, we can achieve our goal by sacrificing  Introducing this approximation, we have
strict rigor and by making an approximation which results in

errors which are inconsequential in our application. w A Smm/
We start by writing /762 c0s2
d’dew—(l—\/l—€2C082u)dw, /
—w— —sinm .
and substitute in the second term \/1 3¢2 + 3e2 cos? msin®(M + o)
- / ~ !
do = oo cosw If we set
cos2 u JTecosm
ecosm
On integrating, we obtain K =
grating Ji-ze’
. , [ 1—+1—e2cos?u . .
w=w — sina’ cosu o do. we can express the integral in the second term as
COS
. do
Let us write .
1= 3e2 /14 k2 sin®(M
1—+v1—e2cos?2u e? ) ) \/ 1€ + k2 sin”(M + o)
5 = —(1+e*pcos” u)(1 + y); . . . _
cosmu 2 Following the same procedure used in expanding the integral
in other words, we set for ds in Sec[®, we introducé defined by*
L 2= VI=Fed ) o YIERT-1 o, 2
Y= P u (1+62pc052 u)? VI4+E?+1 L=
1+ 1e2 cos® u + et cos’ u+ el cos®u + . and separate the integrand into two complex factors,
1+ gpe? cosu + q(q )p e*cos*u
1— 1—3e2)4
+q(qﬁ7%_(§2)pe cos®u+ ... \/( 6)/( 6)0

/ \/1 ¢ exp(2i(M + o)) f/l — € exp(—2i(M + 7)) .

The first three terms in the denominator and in the numerator

are equal, provided that s .
If we expand these in infinite series, the product becdmes

— 3 _ 1
p__17 q__§7

2
which gives 3/1T_ 302
4
1+ 1+ e*cos®u+ et cos*u+ Zebcosbu+ . —|—3(5’(3056(M—|—0)—i—...)da7
y:

1+ ezcos,zu—l- €4COb4u+ eﬁcosﬁu—i—

_ _6 6
_1+192e cos’ U+ ...

/(o/ + 3 cos2(M + o) + 27 cos4(M + o)

30 For a flattening of2- 128 , the error in the longitude difference over a distance
equivalent to a quarter meridian, i.&Q 000 km, is less thar®.000 05”.

31 Bessel gives the relationship betwéérande’ in terms of E/, wherek’ =
tan E/ ande’ = tan? %E’.

32 There are a series of errors in the original paper leading (fi2). Here

29 As a practical matter, it would have been impossible for Besprovide
a complete tabulation of a function of two parameters. Hédcchave tab-
ulated the function for a fixed value @f which would greatly reduced

the utility of hi thod iallv qiven th caistin th we assume that the original EG.112) defirés 3’, /, ..., which makes
€ utility ot his method, especially given the uncertaistin the measure- this equation analogous o {11), and correct the precedingt®ns to be
ments ofe. Instead, Bessel manipulates the expressioniforto move consistent

the dependence on the second parameter into a small terrmthabe
neglected.



where?
1 1.4
of =33/(1—¢)? €.,
3 3.6
1, 141, 14714,
/:l/l_ Z R
7= D3 5537 F 360 56 !
(1.4 1.4.7 1
r_ 13 1_ 2 - 4
v =3V=e) 3-6E 3.6.93°
14710 14
3.6.9-123.6° ]
[1.4.7 1.4-7-10 1
6/:l 1_ /3 /5
sV(L—¢) 1369° ' 369123
1471013 1-4 ;
3.6.9-12-153.6° |
etc.

Integrating fromp = 0 then gives

e?sinm

+ 7' cos(4M + 20) sin 20
+ 6’ cos(6M + 30)sin3o + .. ) (12)

wRw— (o/a—i—ﬁ’ cos(2M + o) sino

11. COMPUTING THE LONGITUDE DIFFERENCE

and evaluatev by means of the tables.

I will continue with the example in Selcl 8 and calculate the
longitude difference between Dunkirk and Seeberg usirgy thi
prescription. Solving the spherical triangle fogives

logsino = 2.963 483 83
log(—sina) = 1.999 695 39(—)
cologcosu’ = 0.199673 73

logsinw = 1.162 852 95(—); = —8°21"57.741".

The argument for the last two columns of the tables is
log((\/;e/\/l — 3e2) cosm), giving
V3e
log cosm = 1.890 371
Argument = 2.734 393.

log = 2.844022

Computing the terms in the seri€s12) gives

log o’ = 1.698 758

log(—sinm) = 1.799 073
e? -
log ————= = 3.811575

1 — 3e?

log o = 4.278 523

1.587929 = +38.719",

an
The first two coefficients of this series are given in the 4th

and 5th columns of the tabsas functions of the argument

logk’ =1lo (7cosm).
g A

The convergence is commensurate with the 3 first columns
of the tables. We calculate using one of the formulas for

spherical triangles (Seld 3), eitfer

sin o sin o’

. —sino sin « sino sinm
sinw = = =
cosu cosu’ cosucosu’’
or®®
a1 /
sin =(u —u
tan fw = 21( ) cot 1(a’ + o)
cos 5 (u' + u)
1 /
coss(u —u
= — 12( )cot%(a’—a).
sin 5 (v’ + u)

V3 =14 fao+ yga? + LaTad +

33 See footnote 18 and sét — x)~ T

14710 4+

34 The value ofg’ in the tables includes the factor @8 000/ necessary to
convert from radians to arc seconds.

35 The first two relations are the sine rule for angVeof triangle ABN of
Fig.[. The last relation is obtained, for example, by stintig for sin o’
from (@).

36 These are Napier’s analogies for angeof triangle ABN.

log 3’ = 1.703
log(— sinm) = 1.799
e? -
log ——— — 3812
/1 —3e?
log(cos(2M + o) sino) = 2.963(—)

2.277(—) = —0.019".

The sum of both terms i$38.700”, and adding this ta, we
find the longitude difference,

= —8°21"19.041".

12. CONCLUSION

This illustration of the use of these tables shows that the
accuracy of the calculation is limited not by the neglect of
terms of high order in the eccentricity, but by the number of
decimal places included. The steps in the calculation are, f
the most part, the same as for a spherical earth; in order to
account for the earth’s ellipticity one needs, in additionly
to solve equatior(11) and to evaluate the sefiek (12). Since
this approach is sufficiently convenient even for routine,us
it is unnecessary to use an approximate method which is valid
only for small distances.

(The tables are shown on the following pages.)



TaBLES for computing geodesics 1.

Arg log o —-A log 3 A logy A loga’ —A log 5’ A
4.4 5.314 42513 1 3.5124 2000 1.698970 0 3.035 200
4.5 5.314 42512 0 3.7124 2000 1.698970 0 3.235 200
4.6 5.314 42512 1 3.9124 2000 1.698970 0 3.435 200
4.7 5.314 42511 2 2.1124 2000 1.698970 0 3.635 200
4.8 5.314 425 09 3 2.3124 2000 1.698970 0 3.835 200
4.9 5.314 425 06 4 2.5124 2000 1.698970 0 2.035 200
3.0 5.314 425 02 6 2.7124 2000 1.698970 0 2.235 200
3.1 5.31442496 10 2.9124 2000 1.698970 0 2.435 200
3.2 5.31442486 16 1.1124 2000 1.698970 0 2.635 200
3.3 5.31442470 25 1.3124 2000 1.698970 0 2.835 200
3.4 5.31442445 40 1.5124 2000 1.698 970 1 1.035 200
3.50 5.314 424 05 5 1.7124 200 1.698969 0 1.235 20
3.51 5.314 424 00 6 1.7324 200 1.698969 0 1.255 20
3.52 5.314 42394 5 1.7524 200 1.698969 0 1.275 20
3.53 5.314 423 89 6 1.7724 200 1.698969 0 1.295 20
3.54 5.314 423 83 6 1.7924 200 1.698969 0 1.315 20
3.55 5.314 423 77 7 1.8124 200 1.698969 0 1.335 20
3.56 5.314 42370 7 1.8324 200 1.698969 0 1.355 20
3.57 5.314 423 63 7 1.8524 200 1.698969 0 1.375 20
3.58 5.314 423 56 7 1.8724 200 1.698969 0 1.395 20
3.59 5.314 423 49 8 1.8924 200 1.698969 0 1.415 20
3.60 5.314 423 41 8 1.9124 200 1.698969 0 1.435 20
3.61 5.314 423 33 8 1.9324 200 1.698969 0 1.455 20
3.62 5.314 423 25 9 1.9524 200 1.698969 0 1.475 20
3.63 5.31442316 10 1.9724 200 1.698969 0 1.495 20
3.64 5.314 423 06 9 1.9924 200 1.698969 0 1.515 20
3.65 5.31442297 11 0.0124 200 1.698 969 1 1.535 20
3.66 5.31442286 10 0.0324 200 1.698968 0 1.555 20
3.67 5.31442276 11 0.0524 200 1.698968 0 1.575 20
3.68 5.31442265 12 0.0724 200 1.698968 0 1.595 20
3.69 5.31442253 12 0.0924 200 1.698968 0 1.615 20
3.70 5.31442241 13 0.1124 200 1.698968 0 1.635 20
3.71 5.31442228 14 0.1324 200 1.698968 0 1.655 20
3.72 5.31442214 14 0.1524 200 1.698968 0 1.675 20
3.73 5.31442200 15 0.1724 200 1.698968 0 1.695 20
3.74 5.31442185 15 0.1924 200 1.698968 0 1.715 20
3.75 5.31442170 16 0.2124 200 1.698968 0 1.735 20
3.76 5.31442154 17 0.2324 200 1.698 968 1 1.755 20
3.77 5.31442137 18 0.2524 200 1.698967 0 1.775 20
3.78 5.31442119 18 0.2724 200 1.698967 0 1.795 20
3.79 5.31442101 20 0.2924 200 1.698967 0 1.815 20
3.80 5.31442081 20 0.3124 200 1.698967 0 1.835 20
3.81 5.31442061 22 0.3324 200 1.698967 0 1.855 20
3.82 5.31442039 22 0.3524 200 1.698967 0 1.875 20
3.83 5.31442017 23 0.3724 200 1.698967 0 1.895 20
3.84 5.31441994 25 0.3924 200 1.698967 1 1.915 20
3.85 5.31441969 25 0.4124 200 1.698966 0 1.935 20
3.86 5.31441944 27 0.4324 200 1.698966 0 1.955 20
3.87 5.31441917 28 0.4524 200 1.698966 0 1.975 20
3.88 5.31441889 30 0.4724 200 1.698966 0 1.995 20
3.89 5.31441859 31 0.4924 200 1.698966 1 0.015 20
3.90 5.314 418 28 0.5124 1.698 965 0.035




TABLES for computing geodesics 2.

Arg log o —-A log 3 A logy A loga’ —A logs’ A
3.90 5.314 418 28 32 0.51235 2000 1.698965 0 0.035 20
3.91 5.314 41796 34 0.53235 2000 1.698965 0 0.055 20
3.92 5.314 41762 35 0.55235 2000 1.698965 0 0.075 20
3.93 5.314 41727 37 0.57235 2000 1.698965 0 0.095 20
3.94 5.314 416 90 39 0.59235 2000 1.698965 1 0.115 20
3.95 5.314416 51 41 0.61235 2000 1.698964 0 0.135 20
3.96 5.314 416 10 42 0.63235 2000 1.698964 0 0.155 20
3.97 5.314 415 68 45 0.65235 2000 1.698 964 1 0.175 20
3.98 5.314 41523 47 0.67235 1999 1.698963 0 0.195 20
3.99 5.314 41476 48 0.69234 2000 1.698963 0 0.215 20
2.00 5.314 414 28 52 0.71234 2000 1.698 963 1 0.235 20
2.01 5.314 41376 53 0.73234 2000 1.698962 0 0.255 20
2.02 5.314 41323 56 0.75234 2000 1.698962 0 0.275 20
2.03 5.314 41267 59 0.77234 2000 1.698962 1 0.295 20
2.04 5.314 41208 61 0.79234 2000 1.698961 0 0.315 20
2.05 5.314 41147 65 0.81234 2000 1.698 961 1 0.335 20
2.06 5.314 410 82 67 0.83234 2000 1.698960 0 0.355 20
2.07 5.31441015 71 0.85234 1999 1.698960 0 0.375 20
2.08 5.314 409 44 74 0.87233 2000 1.698960 1 0.395 20
2.09 5.314 408 70 77 0.89233 2000 1.698959 0 0.415 20
2.10 5.314 40793 81 0.91233 2000 1.698 959 1 0.435 20
2.11 5.314 407 12 85 0.93233 2000 1.698 958 1 0.455 20
2.12 5.314 406 27 89 0.95233 2000 1.698957 0 0475 20
2.13 5.314 405 38 93 097233 1999 1.698957 1 0.495 20
2.14 5.314 404 45 98 0.99232 2000 1.698956 0 0.515 20
2.15 5.31440347 102 1.01232 2000 1.698 956 1 0.535 20
2.16 5.31440245 107 1.03232 2000 1.698 955 1 0.555 20
2.17 5.31440138 112 1.05232 2000 1.698 954 1 0.575 20
2.18 5.31440026 117 1.07232 1999 1.698953 0 0.595 20
2.19 5.31439909 123 1.09231 2000 1.698953 1 0.615 20
2.20 5.31439786 128 1.11231 2000 1.698 952 1 0.635 20
2.21 5.31439658 135 1.13231 2000 1.698 951 1 0.655 20
2.22 5.31439523 141 1.15231 1999 1.698 950 1 0.675 20
2.23 5.31439382 147 1.17230 2000 1.698949 1 0.695 20
2.24 5.31439235 155 1.19230 2000 1.698948 1 0.715 20
2.25 5.31439080 162 1.21230 1999 4.207 40 1.698 947 1 0.735 20
2.26 5.31438918 169 1.23229 2000 4.247 40 1.698 946 1 0.755 20
2.27 5.31438749 177 1.25229 2000 4287 40 1.698945 1 0.775 20
2.28 5.31438572 186 1.27229 1999 4.327 40 1.698944 2 0.795 20
2.29 5.31438386 195 1.29228 2000 4.367 40 1.698942 1 0.815 20
2.30 5.31438191 203 1.31228 1999 4.407 40 1.698 941 1 0.835 20
2.31 5.31437988 213 1.33227 2000 4.447 40 1.698940 2 0.855 20
2.32 531437775 224 1.35227 2000 4.487 40 1.698938 1 0.875 20
2.33 5.31437551 234 1.37227 1999 4527 40 1.698937 2 0.895 20
2.34 5.31437317 244 1.39226 2000 4567 40 1.698935 1 0.915 20
2.35 5.31437073 257 1.41226 1999 4.607 40 1.698934 2 0935 20
2.36 5.31436816 268 1.43225 2000 4.647 40 1.698932 2 0.955 20
2.37 5.31436548 281 1.45225 1999 4.687 40 1.698930 2 0.975 20
2.38 5.31436267 295 1.47224 1999 4727 40 1.698928 2 0.995 20
2.39 5.31435972 308 1.49223 2000 4767 40 1.698926 2 1.015 20
2.40 5.314 356 64 1.51223 4.807 1.698 924 1.035




TABLES for computing geodesics 3.

Arg log o —A log 3 A logy A loga’ —A logs’ A
2.40 5.314 356 64 323 1.51223 1999 4.807 40 1.698 924 2 1.035 20
2.41 5.314 35341 338 1.53222 1999 4.847 40 1.698 922 2 1.055 20
2.42 5.314 350 03 353 1.55221 2000 4.887 40 1.698 920 2 1.075 20
2.43 5.314 346 50 371 1.57221 1999 4927 40 1.698 918 3 1.095 20
2.44 5.314 34279 388 1.59220 1999 4967 40 1.698 915 2 1.115 20
2.45 5.314 33891 406 1.61219 1999 3.007 40 1.698 913 3 1.135 20
2.46 5.314 334 85 425 1.63218 2000 3.047 40 1.698 910 3 1.155 20
2.47 5.314 330 60 446 1.65218 1999 3.087 40 1.698 907 3 1.175 20
2.48 5.314 326 14 466 1.67217 1999 3.127 40 1.698 904 3 1.195 20
2.49 5.314 321 48 489 1.69216 1999 3.167 40 1.698 901 3 1.215 20
2.50 5.314 316 59 511 1.71215 1999 3.207 40 1.698 898 4 1.235 20
2.51 5.314 31148 535 1.73214 1999 3.247 40 1.698 894 3 1.255 20
2.52 5.314 306 13 561 1.75213 1999 3.287 40 1.698 891 4 1.275 20
2.53 5.314 300 52 587 1.77212 1998 3.327 40 1.698 887 4 1.295 20
2.54 5.314 294 65 615 1.79210 1999 3.367 40 1.698 883 4 1.315 20
2.55 5.314 288 50 644 1.81209 1999 3.407 40 1.698 879 4 1.335 20
2.56 5.314 282 06 674 1.83208 1999 3.447 40 1.698 875 5 1.355 20
2.57 5.314 275 32 705 1.85207 1998 3.487 40 1.698 870 5 1.375 20
2.58 5.314 268 27 739 1.87205 1999 3.527 40 1.698 865 4 1.395 20
2.59 5.314 260 88 774 1.89204 1998 3.567 40 1.698 861 6 1.415 20
2.60 5.314 25314 810 1.91202 1998 3.607 39 1.698 855 5 1.435 20
2.61 5.314 24504 848 1.93200 1999 3.646 40 1.698 850 6 1.455 20
2.62 5.314 236 56 889 1.95199 1998 3.686 40 1.698 844 6 1.475 20
2.63 5.314 22767 930 1.97197 1998 3.726 40 1.698 838 6 1.495 20
2.64 5.314 218 37 973 1.99195 1998 3.766 40 1.698 832 6 1.515 20
2.65 5.31420864 1020 2.01193 1998 3.806 40 1.698 826 7 1.535 20
2.66 5.31419844 1068 2.03191 1998 3.846 40 1.698 819 7 1.555 20
2.67 5.31418776 1118 2.05189 1998 3.886 40 1.698 812 8 1.575 20
2.68 5.314176 58 1170 2.07187 1997 3.926 40 1.698 804 7 1.595 20
2.69 5.314164 88 1226 2.09184 1998 3.966 40 1.698 797 9 1.615 20
2.70 5.31415262 1283 2.11182 1997 2.006 40 1.698 788 8 1.635 19
2.71 5.31413979 1344 213179 1998 2.046 40 1.698 780 9 1.654 20
2.72 5.31412635 1406 215177 1997 2.086 40 1.698 771 9 1.674 20
2.73 5.31411229 1473 217174 1997 2.126 40 1.698762 10 1.694 20
2.74 5.31409756 1543 219171 1997 2.166 40 1.698752 11 1.714 20
2.75 5.31408213 1615 2.21168 1997 2.206 40 1.698741 10 1.734 20
2.76 5.31406598 1690 2.23165 1996 2.246 40 1.698731 12 1.754 20
2.77 5.31404908 1771 2.25161 1997 2.286 40 1.698719 11 1.774 20
2.78 5.31403137 1853 2.27158 1996 2.326 40 1.698708 13 1.794 20
2.79 5.31401284 1941 2.29154 1996 2.366 39 1.698695 13 1.814 20
2.800 5.31399343 1004 2.31150 998 2.405 20 1.698 682 6 1.834 10
2.805 5.31398339 1028 2.32148 998 2.425 20 1.698 676 7 1.844 10
2.810 5.31397311 1051 2.331 46 998 2.445 20 1.698 669 7 1.854 10
2.815 5.31396260 1076 2.34144 998 2.465 20 1.698 662 7 1.864 10
2.820 5.31395184 1101 2.35142 998 2.485 20 1.698 655 8 1.874 10
2.825 5.31394083 1127 2.361 40 997 2.505 20 1.698 647 7 1.884 10
2.830 5.31392956 1152 2.37137 998 2.525 20 1.698 640 8 1.894 10
2.835 5.31391804 1180 2.381 35 998 2.545 20 1.698 632 8 1.904 10
2.840 5.31390624 1207 2.391 33 997 2.565 20 1.698 624 8 1.914 10
2.845 5.31389417 1234 2.401 30 998 2.585 20 1.698 616 8 1.924 10
2.850 5.313 88183 2.41128 2.605 1.698 608 1.934
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TABLES for computing geodesics 4.

Arg log o —A log 3 A logy A loga’ —A logs’ A
2.850 5.31388183 1264 2.411279 9974 2.605 20 1.698 608 8 1.934 10
2.855 5.31386919 1293 2.421253 9974 2.625 20 1.698 600 9 1.944 10
2.860 5.31385626 1323 2.431227 9974 2.645 20 1.698 591 9 1.954 10
2.865 5.31384303 1353 2.441201 9973 2.665 20 1.698 582 9 1.964 10
2.870 5.31382950 1385 2.451174 9972 2.685 20 1.698 573 9 1974 10
2.875 5.31381565 1417 2.461146 9972 2.705 20 1.698564 10 1.984 10
2.880 5.31380148 1450 2471118 9971 2.725 20 1.698 554 9 1.994 10
2.885 5.31378698 1484 2.481089 9970 2.745 20 1.698545 10 2.004 10
2.890 5.31377214 1518 2.491059 9970 2.765 20 1.698535 10 2.014 9
2.895 5.31375696 1553 2.501029 9969 2.785 19 1.698525 11 2.023 10
2.900 5.31374143 1590 2.510998 9968 2.804 20 1.698514 10 2.033 10
2.905 5.31372553 1626 2.520966 9968 2.824 20 1.698504 11 2.043 10
2.910 5.31370927 1664 2.530934 9966 2.844 20 1.698493 11 2.053 10
2.915 5.31369263 1702 2.540900 9966 2.864 20 1.698482 11 2.063 10
2.920 5.31367561 1742 2.550866 9965 2.884 20 1.698471 12 2.073 10
2.925 5.31365819 1783 2.560831 9965 2.904 20 1.698459 12 2.083 10
2.930 5.31364036 1824 2.570796 9963 2.924 20 1.698447 12 2.093 10
2.935 5.31362212 1866 2.580759 9963 2.944 20 1.698435 12 2.103 10
2.940 5.31360346 1909 2.590722 9962 2.964 20 1.698423 13 2.113 10
2.945 5.31358437 1953 2.600684 9961 2.984 20 1.698410 13 2.123 10
2.950 5.31356484 1999 2.610645 9960 1.004 20 1.698397 13 2.133 10
2.955 5.31354485 2045 2.620605 9959 1.024 20 1.698384 14 2.143 10
2.960 5.31352440 2093 2.630564 9958 1.044 20 1.698370 14 2.153 10
2.965 5.31350347 2141 2.640522 9957 1.064 19 1.698356 14 2.163 10
2.970 5.31348206 2191 2.650479 9956 1.083 20 1.698342 15 2.173 10
2.975 5.31346015 2241 2.660435 9956 1.103 20 1.698327 15 2.183 10
2.980 5.31343774 2293 2.670391 9954 1.123 20 1.698312 15 2.193 10
2.985 5.31341481 2347 2.680345 9953 1.143 20 1.698297 16 2.203 9
2.990 5.31339134 2400 2.690298 9952 1.163 20 1.698281 15 2.212 10
2.995 5.31336734 2457 2.700250 9951 1.183 20 1.698266 17 2.222 10
1.000 5.31334277 2513 2.710201 9950 1.203 20 1.698249 17 2.232 10
1.005 5.31331764 2571 2.720151 9948 1.223 20 1.698232 17 2.242 10
1.010 5.31329193 2631 2.730099 9948 1.243 20 1.698215 17 2.252 10
1.015 5.31326562 2691 2.740047 9946 1.263 19 1.698198 18 2.262 10
1.020 5.31323871 2754 2.749993 9945 1.282 20 1.698180 18 2.272 10
1.025 5.31321117 2818 2.759938 9943 1.302 20 1.698162 19 2.282 10
1.030 5.31318299 2883 2.769881 9943 1.322 20 1.698143 19 2.292 10
1.035 5.31315416 2949 2.779824 9941 1.342 20 1.698124 20 2.302 10
1.040 5.31312467 3018 2.789765 9939 1.362 20 1.698104 20 2.312 10
1.045 5.31309449 3087 2.799704 9939 1.382 20 1.698084 20 2.322 10
1.050 5.31306362 3159 2.809643 9936 1.402 20 1.698064 21 2.332 10
1.055 5.31303203 3232 2.819579 9936 1.422 20 1.698043 22 2.342 9
1.060 5.31299971 3306 2.829515 9934 1.442 19 1.698021 22 2.351 10
1.065 5.312966 65 3383 2.839449 9932 1.461 20 1.697999 22 2.361 10
1.070 5.31293282 3460 2.849381 9931 1.481 20 1.697977 23 2371 10
1.075 5.31289822 3541 2.859312 9929 1.501 20 1.697954 24 2.381 10
1.080 5.31286281 3623 2.869241 9928 1.521 20 1.697930 24 2.391 10
1.085 5.31282658 3706 2.879169 9926 1.541 20 1.697906 25 2.401 10
1.090 5.31278952 3791 2.889095 9924 1.561 20 1.697881 25 2411 10
1.095 5.31275161 3879 2.899019 9922 1.581 19 1.697856 26 2421 10
1.100 5.31271282 2.908 941 1.600 1.697 830 2.431
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ABSTRACT

These notes provide a detailed derivation of the equations for computing the direct and
inverse problems on the ellipsoid. These equations could be called Bessel's method and
have a history dating back to F. W. Bessel's original paper on the topic titled: 'On the
computation of geographical longitude and latitude from geodetic measurements',
published in Astronomische Nachrichten (Astronomical Notes), Band 4 (Volume 4),
Number 86, Speiten 241-254 (Columns 241-254), Altona 1826. The equations developed
here are of a slightly different form than those presented by Bessel, but they lead directly
to equations presented by Rainsford (1955) and Vincenty (1975) and the method of
development closely follows that shown in Geometric Geodesy (Rapp, 1981). An
understanding of the methods introduced in the following pages, in particular the
evaluation of elliptic integrals by series expansion, will give the student an insight into

other geodetic calculations.

INTRODUCTION

The direct and inverse problems on the ellipsoid are fundamental geodetic operations and

can be likened to the equivalent operations of plane surveying; radiations (computing
coordinates of points given bearings and distances radiating from a point of known
coordinates) and joins (computing bearings and distances between points having known
coordinates). In plane surveying, the coordinates are 2-Dimensional (2D) rectangular
coordinates, usually designated East and North and the reference surface is a plane, either

a local horizontal plane or a map projection plane.

Geodesics — Bessel's method



In geodesy, the reference surface is an ellipsoid, the coordinates are latitudes and

longitudes, directions are known as azimuths and distances are geodesic arc lengths.

Fig. 1. Geodesic curve on an ellipsoid

The geodesic is a unique curve on the surface of an ellipsoid defining the shortest distance
between two points. A geodesic will cut meridians of an ellipsoid at angles a, known as
azimuths and measured clockwise from north 0° to 360°. Figure 1 shows a geodesic curve
C between two points A ((;SA,)\A) and B (qu,)\B) on an ellipsoid. ¢,\ are latitude and
longitude respectively and an ellipsoid is taken to mean a surface of revolution created by
rotating an ellipse about its minor axis, NS. The geodesic curve C of length s from A to B

has a forward azimuth «a,, measured at A and a reverse azimuth «a,, measured at B.

The direct problem on an ellipsoid is: given latitude and longitude of A and azimuth «,,

and geodesic distance s, compute the latitude and longitude of B and the reverse azimuth
g, -

The inverse problem is: given the latitudes and longitudes of A and B, compute the

forward and reverse azimuths «a,,, a,, and the geodesic distance s.

Formula for computing geodesic distances and longitude differences between points
connected by geodesic curves are derived from solutions of elliptic integrals and in Bessel's
method, these elliptic integrals are solutions of equations connecting differential elements
on the ellipsoid with corresponding elements on an auxiliary sphere. These integrals do
not have direct solutions but instead are solved by expanding them into trigonometric

series and integrating term-by-term. Hence the equations developed here are series-type
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formula truncated at a certain number of terms that give millimetre precision for any

length of line not exceeding 180° in longitude difference.

These formulae were first developed by Bessel (1826) who gave examples of their use using

10-place logarithms. A similar development is given in Handbuch der Vermessungskunde

(Handbook of Geodesy) by Jordan/Eggert/Kneissl, 1958.

The British geodesist Hume Rainsford (1955) presented equations and computational
methods for the direct and inverse problems that were applicable to machine computation
of the mid 20th century. His formulae and iterative method for the inverse case were
similar to Bessel's, although his equations contained different ellipsoid constants and
geodesic curve parameters, but his equations for the direct case, different from Bessel's,
were based on a direct technique given by G.T. McCaw (1932-33) which avoided iteration.
For many years Rainsford's (and McCaw's) equations were the standard method of solving
the direct and inverse problems on the ellipsoid when millimetre precision was required,
even though they involved iteration and lengthy long-hand machine computation. In 1975,
Thaddeus (Tom) Vincenty (1975-76), then working for the Geodetic Survey Squadron of
the US Air Force, presented a set of compact nested equations that could be conveniently
programmed on the then new electronic computers. His method and equations were based
on Rainsford's inverse method combined with techniques developed by Professor Richard
H. Rapp of the Ohio State University. Vincenty's equations for the direct and inverse

problems on the ellipsoid have become a standard method of solution.

Vincenty's method (following on from Rainsford and Bessel) is not the only method of

solving the direct and inverse problems on the ellipsoid. There are other techniques; some
involving elegant solutions to integrals using recurrence relationships, e.g., Pittman (1986)
and others using numerical integration techniques, e.g., Kivioja (1971) and Jank & Kivioja

(1980).

In this paper, we present a development following Rapp (1981) and based on Bessel's
method which yields Rainsford's equations for the inverse problem. We then show how
Vincenty's equations are obtained and how they are used in practice. In addition, certain
ellipsoid relationships are given, the mathematical definition of a geodesic is discussed and
the characteristic equation of a geodesic derived. The characteristic equation of a geodesic

is fundamental to all solutions of the direct and inverse problems on the ellipsoid.
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SOME ELLIPSOID RELATIONSHIPS

The size and shape of an ellipsoid is defined by one of three pairs of parameters: (i) a,b

where a and b are the semi-major and semi-minor axes lengths of an ellipsoid respectively,

or (ii) a,f where fis the flattening of an ellipsoid, or (iii) a,e* where e’ is the square of
the first eccentricity of an ellipsoid. The ellipsoid parameters a,b, f,e* are related by the

following equations

a—b b
f= —1-2 (1)
a a
b=a(l-f) (2)
a’ — b’ b’
et 1l ey 3)
a a
, b 2
1—¢ =t oi-fe-p=0-) 8
The second eccentricity e’ of an ellipsoid is also of use and
2 g2 2 2 .
6/220 2b :a_2_1: 62:f(2 f2> (5)
b b l—e (1-1)
12
5 e
- _° 6
C =T (6)

In Figure 1 the normals to the surface at A and B intersect the rotational axis of the
ellipsoid (NS line) at H, and H, making angles ¢,,¢, with the equatorial plane of the
ellipsoid. These are the latitudes of A and B respectively. The longitudes A,,\, are the
angles between the Greenwich meridian plane (a reference plane) and the meridian planes
ONAH, and ONBH, containing the normals through A and B. ¢ and A are curvilinear
coordinates and meridians of longitude (curves of constant A) and parallels of latitude

(curves of constant ¢ ) are parametric curves on the ellipsoidal surface.

For a general point P on the surface of the ellipsoid (see Fig. 2), planes containing the
normal to the ellipsoid intersect the surface creating elliptical sections known as normal
sections. Amongst the infinite number of possible normal sections at a point, each having

a certain radius of curvature, two are of interest: (i) the meridian section, containing the

axis of revolution of the ellipsoid and having the least radius of curvature, denoted by p,

and (ii) the prime vertical section, perpendicular to the meridian plane and having the

greatest radius of curvature, denoted by v.
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B a(l—eQ) B a(1—62>
. (1—@2 sin” <Z5)‘ oW "

(S

U= a _a (8)

(1 — e%sin? gf))% a W

W? =1-¢’sin’¢ 9)

The centres of the radii of curvature of the prime vertical sections at A and B are at H,
and H,, where H, and H, are the intersections of the normals at A and B and the
rotational axis, and v, = PH,, v, = PH,. The centres of the radii of curvature of the

meridian sections at A and B lie on the normals between P and H, and P and H,.

Alternative equations for the radii of curvature p and v are given by

p = 3 1,3 (10)
b(l + €’* cos” (;5)2 v

2
a

v = == (11)
b<1 +€'* cos’ gf))z 4
2
=2 -_° (12)
b 1—-f
VZ=1+¢"cos’ ¢ (13)
and c is the polar radius of curvature of the ellipsoid.
The latitude functions W and V are related as follows
2
W?:V—,2 and W:LLZQV (14)
1 _|_ e (1 _|_ 6/2)2 a

Points on the ellipsoidal surface have curvilinear coordinates ¢,A and Cartesian
coordinates x,y,z where the z-z plane is the Greenwich meridian plane, the z-y plane is the
equatorial plane and the y-z plane is a meridian plane 90° east of the Greenwich meridian

plane. Cartesian and curvilinear coordinates are related by
T = I/ COS ( COS A
Y = I COS ¢ COS A (15)
z = V(l —62)31n¢

Note that v (1 — 62) is the distance along the normal from a point on the surface to the

point where the normal cuts the equatorial plane.
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THE DIFFERENTIAL RECTANGLE ON THE ELLIPSOID

The derivation of equations relating to the geodesic requires an understanding of the
connection between differentially small quantities on the surface of the ellipsoid. These
relationships can be derived from the differential rectangle, with diagonal P in Figure 2
which shows P and () on an ellipsoid, having semi-major axis a, flattening f, separated by
differential changes in latitude d¢ and longitude dA. P and () are connected by a curve
of length ds making an angle « (the azimuth) with the meridian through P. The
meridians A and A\ + d\, and the parallels ¢ and ¢ + d¢ form a differential rectangle on
the surface of the ellipsoid. The differential distances dp along the parallel ¢ and dm

along the meridian A\ are

dp = wd\ = vcospd\ (16)
dm= pd¢ (17)

where p and v are radii of curvature in the meridian and prime vertical planes

respectively and w = v cos¢ is the perpendicular distance from the rotational axis.

meridian 3

Figure 2: Differential rectangle on the ellipsoid

The differential distance ds is given by

ds = \Jdp® +dm’ = \/(V Cosgbd)\)2 + (p d¢)2 (18)
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and so

2 2
ﬁz v* cos’ aA +p’ ﬁ:\/u20052¢+p2[@]
do d¢ dA d\
while
sina = l/cos¢% and cosa = p% (19)
MATHEMATICAL DEFINITION OF A GEODESIC
&r C A geodesic can be defined mathematically by considering

concepts associated with space curves and surfaces. A
space curve may be defined as the locus of the terminal
points P of a position vector r(t¢) defined by a single

scalar parameter t,

r(t)=z@)i+y@)j+z()k (20)

i, j, k are fixed unit Cartesian vectors in the directions of

the z,y,z coordinate axes. As the parameter ¢ varies the

Figure 3: Space curve C

terminal point P of the vector sweeps out the space

curve C.

Let s be the arc-length of C measured from some convenient point on C, so that

ds dzV  (dy)  (dzY dr dr . .
— = |—| +|—=| +|—]| or s= f — e — dt. Hence sis a function of ¢ and z,y,z are
dt dt dt dt dt dt

functions of s. Let @, a small distance dsalong the curve from P, have a position vector

r+6r. Then ér = PQ and |6r| ~|6s|. Both when ésis positive or negative or
s

. . . . . . . dr .
approximates to a unit vector in the direction of s increasing and d_ is a tangent vector of
S

unit length denoted by t; hence

dr  dr, dy. dz
—=—i+—j+—k 21
ds dsl ds'] ds (21)

t

Since t is a unit vector then tet =1 and differentiating with respect to s leads to

- dt dt .
te N = 0 from which we deduce that s is orthogonal to t and write
s s

& h, k>0 (22)
ds
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dt . .. . .
d_ is called the curvature vector k, n is a unit vector called the principal normal vector,
S

1 . . . ;
k the curvature and — = p is the radius of curvature. The circle through P, tangent to t
K

e : L . L :
with this radius p is called the osculating circle. Also n e = = K ;i.e., n is the unit
s

vector in the direction of k. Let b be a third unit vector defined by the vector cross

product

A~

b=txn (23)

thus t,b and & form a right-handed triad. Differentiating equation (23) with respect to s

gives
@:i(fxﬁ):ﬂxﬁ+£xd—n:mﬁxﬁ+fxd—n:Exd—n
ds ds ds s ds ds
then
o2 — o 22| = afixi] =0
ds ds ds

~ ~ ~

so that % is orthogonal to t. But from beb =1 it follows that be % = 0 so that ;@ is
s s s

~

- . C s . . db . . 5
orthogonal to b and so is in the plane containing t and n. Since I is in the plane of t
s

~

. . .. . S db . o
and n and is orthogonal to t, it must be parallel to n. The direction of % is opposite n
s

A

. db .. o -
as it must be to ensure the cross product — x t is in the direction of b. Hence
s

~

db

— =—71, T>0 (24)
ds

N 1 AL
We call b the unit binormal vector, 7 the torsion, and — the radius of torsion. t, n and
T

b form a right-handed set of orthogonal unit vectors along a space curve.

The plane containing t and f is the osculating plane, the plane containing i and b is

the normal plane and the plane containing t and b is the rectifying plane. Figure 4 shows

these orthogonal unit vectors for a space curve.
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- osculating plane
recltifying J < -
plane N _—normal plane

Figure 4: The tangent t, principal normal fi and binormal b to a space curve

Also h = bxt and the derivative with respect to sis

da dr o db . - dt L .
—=—(bxt|]=—xt+bx—=—mxt+bxkn=7b-—kt 25
ds ds( ) ds ds 4 ’ (25)

Equations (22), (24) and (25) are known as the Frenet-Serret formulae.

b

—= kK0

ds

db

. (26)
| b

ds

These formulae, derived independently by the French mathematicians Jean-Frédéric
Frenet (1816-1900) and Joseph Alfred Serret (1819-1885) describe the dynamics of a point
moving along a continuous and differentiable curve in three-dimensional space. Frenet
derived these formulae in his doctoral thesis at the University of Toulouse; the latter part
of which was published as 'Sur quelques propriétés des courbes a double courbure', (Some
properties of curves with double curvature) in the Journal de mathématiques pures et
appliqués (Journal of pure and applied mathematics), Vol. 17, pp.437-447, 1852. Frenet
also explained their use in a paper titled '"Théorémes sur les courbes gauches' (Theorems on
awkward curves) published in 1853. Serret presented an independent derivation of the
same formulae in 'Sur quelques formules relatives a la théorie des courbes & double
courbure' (Some formulas relating to the theory of curves with double curvature) published

in the J. de Math. Vol. 16, pp.241-254, 1851 (DSB 1971).
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A geodesic may be defined in the following manner:

A curve drawn on a surface so that its osculating plane at any point contains the
normal to the surface at the point is a geodesic. It follows that the principal normal
at any point on the curve is the normal to the surface and the geodesic is the shortest

distance between two points on a surface.

osculating
plane

normal section
e plane

Figure 5: The osculating plane of a geodesic

To understand that the geodesic is the shortest path on a surface requires the use of

Meusnier's theorem, a fundamental theorem on the nature of surfaces. Jean-Baptiste-

Marie-Charles Meusnier de la Place (1754 - 1793) was a French mathematician who, in a

paper titled Mémoire sur la corbure des surfaces (Memoir on the curvature of surfaces),

read at the Paris Academy of Sciences in 1776 and published in 1785, derived his theorem

on the curvature, at a point of a surface, of plane sections with a common tangent (DSB

1971). His theorem can be stated as:

Between the radius p of the osculating circle of a plane slice C' and the radius
py of the osculating circle of a normal slice €, where both slices have the
same tangent at P, there exists the relation

p = pycos§

where ¢ is the angle between the unit principal normals n and N to curves C
and C) at P.
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In Figure 5, an infinitesimal arc PQ of a geodesic coincides with the section of the surface

S by a plane containing t and N where N is a unit vector normal to the surface at P.

This plane is a normal section plane through P and by Meusnier's theorem, the geodesic
arc P(Q) is the arc of least curvature through P and @; or the shortest distance on the
surface between two adjacent points P and () is along the geodesic through the points. In
Figure 5, curve C (the arc APB) will have a smaller radius of curvature at P than curve

C) the normal section arc Q'PQ).

THE CHARACTERISTIC EQUATION OF A GEODESIC USING DIRECTION
COSINES

r=rcosa

Figure 6: Direction cosines

The characteristic equation of a geodesic can be derived from relationships between the
direction cosines of the principal normal to a curve and the normal to the surface. In

Figure 6, r =i+, j+ n, k is a vector between two points in space having a magnitude

r 7 T

2 2 2 A . . . .

r=4yr+mn +n. t=—=-=Li+-2j+ -2k is a unit vector and the scalar components
roor r r

N b 5

—=cosa, ==cosfl and ==cosvy. [=cosa, m=cos( and n = cos~y are known as

r r r

direction cosines and the unit vector can be expressed as r =[li+mj+ nk.

From equations (20) and (22) we may write the unit principal normal vector n of a curve
C as

. 1d2 //. //. 1/ . .
n:;d—;z%l y?.]-l—%k:px”l—i-py”‘]+pz”k (27)
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1 d &’ : - .
where p=—. 2’ = d_x and 1" = d—f are first and second derivatives with respect to arc
K s s

length respectively and similarly for v/, 2/, y",2".

The unit normal N to the ellipsoid surface is N = ﬂi + Ny j+ ﬁk where N,,N,,N, are
v v v

. — . ) N
the Cartesian components of the normal vector PH and v is the magnitude. — = cosa,
v
) N, . . . . .
—= =cos and — = cos~y are the direction cosines [, m and n. Note that the direction
v v

of the unit normal to the ellipsoid is towards the centre of curvature of normal sections

passing through P.

Figure 7: The unit normal N to the ellipsoid

The unit normal N to the ellipsoid surface is given by

N = [ﬁ]l + [_—y]j + [M]k (28)

14 1% 14

To ensure that the curve C'is a geodesic, i.e., the unit principal normal n to the curve
must be coincident with the unit normal N to the surface, the coefficients in equations

(27) and (28) must be equal, thus

—T " —Y " —vsin¢ "
— =pr 5 —=pYy ;5 ————=pP=z
v v v

This leads to

px// p y// p Z”

7, - % :Vsin%

(29)
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From the first two equations of (29) we have pz” L oy L4 giving the second-order
z y

differential equation (provided pv = 0)
xy” —y 2" =0
which can be written as di(xy' — ym') = 0 and so a first integral is
s

zy' —yz' =C (30)

where C'is an arbitrary constant. Now, from equations (15), z and y are functions of ¢
and A, and the chain rule gives
o vdo vy
0p ds O\ ds
o Qudo Dy dA
0 ds O\ ds

(31)

Differentiating the first two equations of (15) with respect to ¢ , bearing in mind that v is

a function of ¢ gives

oz

a—¢: —ysinchos)\—Fcosqbcos)\Z—;

ae’ sin ¢ cos ¢
(1 — e’ sin’ gzﬁ)%

= —vSin ¢ cos A + cos ¢ cos A

Using equation (8) and simplifying yields
Ox

—= —psin¢gcos A

d¢

Similarly

—= —ysin¢sin)\+cos¢sin)\j—gz —psin ¢sin A

Placing these results, together with the derivatives % and % into equations (31) gives

7 = —psin¢cos)\@—ycos¢sin)\—
ds d

s
y = —psind)sin)\@%— Vcos¢cos)\@
ds ds

These values of 2" and y’ together with  and y from equations (15) substituted into
equation (30) gives
d\

v cos’ p— =C (32)
ds
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which can be re-arranged to give an expression for the differential distance ds

2 2
ds :M(M
C

ds is also given by equation (18) and equating the two and simplifying gives the
differential equation of the geodesic (Thomas 1952)

C’p*d¢® + v cos® ¢ (CZ —v° cos’ (b) d\? =0 (33)

From equation (19), sina = VCOS(X)(;—)\ and substituting into equation (32) gives the
s

characteristic equation of the geodesic on the ellipsoid

veospsina = C (34)

Equation (34) is also known as Clairaut's equation in honour of the French mathematical
physicist Alexis-Claude Clairaut (1713-1765). In a paper in 1733 titled Détermination
géométrique de la perpendiculaire & la méridienne, tracée par M. Cassini, avec plusieurs
methods d’en tirer la grandeur et la figure de la terre (Geometric determination of the
perpendicular to the meridian, traced by Mr. Cassini, ... on the figure of the Earth.)
Clairaut made an elegant study of the geodesics of quadrics of rotation. It included the
property already pointed out by Johann Bernoulli: the osculating plane of the geodesic is

normal to the surface (DSB 1971).

The characteristic equation of a geodesic shows that the geodesic on the ellipsoid has the
intrinsic property that at any point, the product of the radius w of the parallel of latitude
and the sine of the azimuth of the geodesic at that point is a constant. This means that as
w = v cos @ decreases in higher latitudes, in both the northern and southern hemispheres,
sin « increases until it reaches a maximum or minimum of +1, noting that the azimuth of
a geodesic at a point will vary between 0° and 180° if the point is moving along a geodesic
in an easterly direction or between 180° and 360° if the point is moving along a geodesic in
a westerly direction. At the point when sin a = +1, which is known as the vertex, w is a
minimum and the latitude ¢ will be a maximum value ¢,, known as the geodetic latitude
of the vertex. Thus the geodesic oscillates over the surface of the ellipsoid between two
parallels of latitude having a maximum in the northern and southern hemispheres and
crossing the equator at nodes; but as we will demonstrate later, due to the eccentricity of

the ellipsoid the geodesic will not repeat after a complete cycle.
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Figure 8a Figure 8b Figure 8c

Figure 8: A single cycle of a geodesic on the Earth

Figures 8a, 8b and 8c show a single cycle of a geodesic on the Earth. This particular
geodesic reaches maximum latitudes of approximately +45° and has an azimuth of

approximately 45° as it crosses the equator at longitude 0°.

Figure 9 shows a schematic representation of the oscillation of a geodesic on an ellipsoid.
P is a point on a geodesic that crosses the equator at A, heading in a north-easterly

direction reaching a maximum northerly latitude ¢, at the vertex F, (north), then

max

descends in a south-easterly direction crossing the equator at B, reaching a maximum

southerly latitude ¢

min

at P, (south), then ascends in a north-easterly direction crossing
the equator again at A'. This is one complete cycle of the geodesic, but A, does not equal
A, due to the eccentricity of the ellipsoid, hence we say that the geodesic curve does not

repeat after a complete cycle.

o % vertex
max PRI

I —
A / B equator

node X\ node node A

(bmin

vertex

Figure 9: Schematic representation of the oscillation of a geodesic on an ellipsoid
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RELATIONSHIPS BETWEEN PARAMETRIC LATITUDE ¢ AND GEODETIC
LATITUDE ¢

The development of formulae is simplified if parametric latitude ¢ is used rather than

geodetic latitude ¢ . The connection between the two latitudes can be obtained from the

following relationships.

Figure 10 shows a portion of a meridian NPFE of an

auziliary circle

ellipsoid having semi-major axis OF = a and semi-
minor axis ON =b. P is a point on the ellipsoid
and P’ is a point on an auxiliary circle centred on O
of radius a. P and P’ have the same perpendicular
distance w from the axis of revolution ON. The

normal to the ellipsoid at P cuts the major axis at

an angle ¢ (the geodetic latitude) and intersects the
rotational axis at H. The distance PH = v . The

angle P'OE =1 is the parametric latitude
Figure 10: Meridian section of ellipsoid
The Cartesian equation of the ellipse and the
2 2
auxiliary circle of Figure 10 are —- + 7 =1 and w”® + 2° = a’ respectively. Now, since
a

2
. ! 2 4 2 2 2 2 :
the w-coordinate of P and P’ are the same then a” — b—sz = W, = W, = a  — Z, Which

Using this relationship

b
leads to 2z, = —2,..
a

w= OM = acos

(35)
z = MP = bsinv

Note that writing equations (35) as v cosvy and % = sin ¢ then squaring and adding
a
2 2

gives — + 7o cos” 1 + sin® ¢ = 1 which is the Cartesian equation of an ellipse.
a

From Figure 10
W= VCcosP = acosy (36)

and from the third of equations (15) z = 1/(1 - 62)singz5, hence using equations (35) we

may write
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W= acosY = U Cosp

37
z:bsinzbzu(l—eQ)singb (37)
from which the following ratios are obtained
Z - étangb = (1 — eQ)tan¢
wooa
a’ —b b’ b’
Since e’ = e =1- pl then 1—¢e* = e and we may define parametric latitude 1 by
tanwzétanqﬁ:(1—62>%tan¢:(1—f)tan¢ (38)
a

Alternatively, using equations (36) and (8) we may define the parametric latitude ¢ by

cos ¢

(39)
(1 — e’ sin’ gb)

cos ) =

ol —|

or equivalently by

sin ¢ 1 (40)
(1 — e? cos’ 1/1)5

sing =

These three relationships are useful in the derivation of formulae for geodesic distance and

longitude difference that follow.

THE LATITUDES ¢, AND ¢, OF THE GEODESIC VERTEX

a
<1 — e’ sin’ qﬁ)% .

Now Clairaut's equation (34) is v cos¢sin a = constant = C', where v =

The term v cos¢ will be a minimum (and the latitude ¢ will be a maximum in the
northern and southern hemispheres) when |sin o] is a maximum of 1, and this occurs when

a = 90° or 270°. This point is known as the geodesic vertex.

Let v, cos¢, be this smallest value, then
v,cos¢, = C =wvcospsina (41)

¢, is called the maximum geodetic latitude and the value of 1) corresponding to ¢, is
called the maximum parametric latitude and is denoted by ,. Using this correspondence

and equations (36) and (41) gives

acos, = vcospsina = acossin (42)
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From this we may define the parametric latitude of the vertex v, as

cos Y, = cossin a (43)

and the azimuth « of the geodesic as

\/ cos” 1 — cos’ 1,
cOos

CoOS ¥ =

From equation (43) we see that if the azimuth « of a geodesic is known at a point P
having parametric latitude 1, the parametric latitude 1), of the vertex F, can be
computed. Conversely, given ¢ and 1), of points P and F, the azimuth of the geodesic

between them may be computed from equation (44).

THE ELLIPSOID, THE AUXILIARY SPHERE AND THE DIFFERENTIAL
EQUATIONS

The derivation of Bessel's formulae (or Rainsford's and Vincenty's equations) begins by
developing relationships between the ellipsoid and a sphere. The sphere is an auxiliary
surface and not an approximation of the ellipsoid; its radius therefore is immaterial and

can be taken to be 1 (unit radius).

N verter o > N verter
e a=90° 90°= v, A=90°

node node

equator

™ ellipsoid

~— auxiliary

sphere
Figure 11a: The geodesic passing through Figure 11b: The great circle passing through
E and E on the ellipsoid. R’ and B’ on the auxiliary sphere.
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Figure 11a shows a geodesic passing through P, and P, on an ellipsoid. The geodesic has
azimuths «, where it crosses the equator (a node), a; and «, at P, and P, respectively

and reaches a maximum latitude at the vertex where its azimuth is a = 90°. The length
of the geodesic between P, and P, is s and the longitudes of P, and P, are A\ and ).

Using equation (43) we may write

cos 1), sina, = cos, sin a,, = cos Y, (45)
Figure 11b shows Pll and P/ on an auxiliary sphere (of unit radius) where latitudes on
this sphere are defined to be equal to parametric latitudes on the ellipsoid. The geodesic, a
great circle on a sphere, passing through Pl/ and P/ has azimuths A, at the equator E, A
and A, at P/ and P, respectively and A = 90° at the vertex H. The length of the great

circle between P/ and P, is o and the longitudes of P/ and P, are w, and w,. Again,
using equation (43), which holds for all geodesics (or great circles on auxiliary spheres) we

may write
cos 1), sin 4, = cos, sin A, = cos 1, (46)
Now, since parametric latitudes are defined to be equal on the auxiliary sphere and the

ellipsoid, equations (45) and (46) show that on these two surfaces A = a, i.e., azimuths of

great circles on the auxiliary sphere are equal to azimuths of geodesics on the ellipsoid.

Now, consider the differential rectangle on the ellipsoid and sphere shown in Figures 12a

and 12b below

o+ dao o+ do

A AF+dX w wtdw
Figure 12a: Differential rectangle Figure 12b: Differential rectangle
on ellipsoid on sphere

We have for the ellipsoid [see Figure 2 and equations (19)]
dscosa = pdo

4
dssina = vcos¢ dA (47)
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and for the sphere

do cosa =d)
48
dosina = cosY dw (48)
Dividing equations (47) by equations (48) gives
dscos« _Pd¢_ dssin _VCOS¢ dX
do cos dip do sin cos Y dw
and noting from equation (36) that v cos¢ = acos®, then cancelling terms gives
ds _ p L a@ (49)
do dvy dw
We may write these equations as two separate relationships
ds d
= = p_(b (50)
do dip
A _1ds -
dw ado

: : : d : .
and if we can obtain an expression for d—¢ then we may develop two relatively simple

differential equations; one involving distance d_s (s ellipsoid and o sphere) and the other
o

d\
involving longitude o (A ellipsoid and w sphere). Integration yields equations that will
w

enable us to compute geodesic lengths s on the ellipsoid given great circle distances ¢ on
an auxiliary sphere, and equations to compute longitude differences A\ on the ellipsoid

given longitude differences Aw on the auxiliary sphere.

do

An expression for 0 can be determined as follows.

From equation (38) we have
tany = <1 — 62)% tan ¢

and differentiating with respect to ¥ gives

d d 2\2
%(tanw) :%{@—e ) tangb}—

and sec’ ) = <1 —¢° )% sec’ @
d
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2
giving @ = ! T COSQ ¢ (52)
@y (1-¢) cos’ ¥

Substituting equation (52) into equation (50) gives

ds P cos’ ¢

ds _ 1 53
do (1 — 62)5 cos” 9 (53)
and substituting equation (53) into equation (51) gives
2
A__p cos ¢ (54)
dw a<1—62>2 cos”
Now from equation (36) we may write
2 2
cos ¢ _a 4 COS2¢ :a_2
cosy v coS v
and using the relationships given in equations (4), (10), (11) and (12) we may write
cos’¢ a’  bV? P c a a’ P a’
Ty T T2 T T a2 T T 8 280 T = J2r,3 (55)
cos" Y v a (1—@2)2 Vb bV a<1—62)2 bV
Substituting these results into equations (53) and (54) gives
ds _a (56)
do 'V
and A _ L (57)
dw V
Now from equation (13) we may write V> =1+ > cos’ ¢ and also from equation (55) we
2772
may write cos’ ¢ = 5 cos’ 1. Using these gives
a

2y72

V2 :1+e'2—b‘2/ cos2w
a

Now using equations (4) and (5) gives

2

V=142
1

5 (1 — 62)V2 cos’
=1+¢eV?cos®
and V? (1 — e’ cos’ w) =1 from which we obtain

1
(1 — e’ cos’ ¢)

V=

(58)

o=
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Substituting equation (58) into equations (56) and (57) gives

ds

[

== (1 — ¢’ cos’ 1p>: (59)
and

dA 4

o (1 — ¢’ cos’ zp) (60)

Equations (59) and (60) are the two differential equations from which we obtain distance s

and longitude difference w — \.

FORMULA FOR COMPUTATION OF GEODESIC DISTANCE s

vertex

node

T auxiliary
sphere

Figure 13: Geodesic on auxiliary sphere

Figure 13 shows P’ and P/ on an auxiliary sphere (of unit radius) where latitudes on this

sphere are defined to be equal to parametric latitudes on the ellipsoid. The geodesic, a
great circle on a sphere, passing through Pl/ and P/ has azimuths «, at the equator E, q,

at P/, a, at P/ and a =90° at the vertex H.
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Note here that we have shown previously that for our auxiliary sphere, the azimuth of a

great circle on the sphere is equal to the azimuth of the geodesic on the ellipsoid. The

length of the great circle arc between P/ and P/ is o and the longitudes of P/ and P,

are w, and w,. Also note that o, and o, are angular distances along the great circle from

the node £ to Pl/ and E to P/ respectively and the angular distance from F to the vertex
His 90°. 1, v, and ), are the parametric latitudes of P, P, and the vertex

respectively, and they are also the latitudes of Pl/, P/ and the vertex H on the auxiliary

sphere.

From the spherical triangle PN’ H with the right-

angle at H, using the sine rule (for spherical

trigonometry)
sin q, _ sin(90°)
sin (90° — %) sin(900 — wl)
sin o 1
or =

cosy,  cos

S0 sin o cos v, = cos Y, (61)

Note that equation (61) can also be obtained from equation (43) and at the equator where

1 =90° and cosy =1 we have

sin o, = cos ), (62)

Using Napier's Rules for circular parts in the right-angled spherical triangle P'N’'H

sin (mid-part) = product of tan (adjacent-parts)

sin (90° — o) = tan, tan (90° — o)
90°—(90°— ;)
! cosq, = tant, coto,

_ tan,
tan o,

and

tan
tano, = ¥
cos o

(63)
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Using Napier's Rules for circular parts in the right-angled spherical triangle P/ N’ H

90°=(90°—,)

900_062 900— (O’ 1+ O')

sin (mid-part) = product of cos (opposite-parts)
sin), = cos (90° — (o, + 0)) cos(90° — ¢y )
sint, = sin (o, + o)sin ), (64)

Note: The subscript 2 can be dropped and we can just refer to a general point P’ and the

. / .
distance from P’ to P'is o, hence

sint = sin (o, + o)sin (65)

Referring to equations (59) and (60), we need to develop an expression for cos®¢. This

can be achieved in the following manner.

Squaring both sides of equation (65) and using the trigonometric identity

sin” 9 + cos’ 1) =1 we have

sin’ ¢ =1—cos” ¢ = sin’ (o, + o)sin’ 1),

so that
cos’ ¢ =1—sin’ (o, + o)sin’ ¢, (66)
Let
r=0+0 (67)
and equation (66) becomes
cos’ ¢ = 1—sin® zsin® 1), (68)

We may now write equation (59) with dz = do since o, is constant, as

ds =a (1 — e’ cos’ 1/1)% do

a (1 —é [1 — sin® zsin® %D dx

[

[T

a (1 — ¢’ + ¢’ sin® zsin’ %)‘ dz
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Now using equations (4), (5) and (6)

1

1 6/2 ) ) 2
a + sin” x sin dx
1+e? 1467 Y
= %(1 + ¢* sin® zsin’ %)
<1+e/2)2

= b(l + €’? sin® z sin’ %)% dx

ds =

ol

dx

Now, since e’ is a constant for the ellipsoid and 1), is a constant for a particular geodesic

we may write

u® = e sin’ ¢, = e”? cos® a, (69)

where «, is the azimuth of the geodesic at the node or equator crossing, and
ds =b (1 + u? sin’ x)é dzx (70)

The length of the geodesic arc s between P and P, is found by integration as

T=0)+0
1

s=b f (1 + u® sin’ :1:)2 dz (71)
where the integration terminals are = 0, and = o, + 0 remembering that at P/,
oc=0and z=o0,,andat P/, 1=0,+0.
Equation (71) is an elliptic integral and does not have a simple closed-form solution.
However, the integrand (1 + u® sin® x)j can be expanded in a series and then evaluated by

term-by-term integration.

The integrand in equation (71) can be expanded by use of the binomial series

(1+2) = Bla" (72)

An infinite series where n is a positive integer, ( is any real number and the binomial
coefficients B’ are given by

i BB-D(E-2)(B-3)(B-n+1)

n!

(73)

The binomial series (72) is convergent when —1 <z < 1. In equation (73) n! denotes n-

factorial and n!=n(n—1)(n —2)(n —3)---3-2-1. zero-factorial is defined as 0! =1 and

the binomial coefficient B} = 1.
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In the case where 3 is a positive integer, say k, the binomial series (72) can be expressed
as the finite sum
' k
(o) =3 Ba" (74)
n=0
where the binomial coefficients B in series (74) are given by

k!
Bf = — 75
"ok —n)! (75)

The binomial coefficients B? for the series (72) are given by equation (73) with the

following results for n = 0,1,2 and 3

n=0 Bi =1
n=1 szl
2
1)(_1
n =2 BQ%_(Z)( 2):_1
2! 8
1) (_1)(_3
iy o BENED 1
3! 16
Inspecting the results above, we can see that the binomial coefficients Bf form a sequence
11 11 1.1-3  1-1-3-5 1-1-3.5-7  1-1-3-5-7-9
"27 2.472.4.6° 2-4-6-8 2-4-6-8-10° 2-4-6-8-10-12’

Using these results

4 1-1-3
T+
2.4

ol

u®sin® z

1 .
<1+u2 sin? :U) =14+ =u’sin’z— —u'sin
2 2.4

1-1-3- 1-1-3-5-
_ﬁug Singx_i_ﬂulo Sinlox _|_... (76)
2:4-6-8 2-4-6-8-10
To simplify this expression, and make the eventual integration easier, the powers of sinz

can be expressed in terms of multiple angles using the standard form

2n
5 cos(2n —4)x

2271,

(-1 2n
+ - 1cos2nx — ] cos(2n —2)x +

2n .
5 ]cos(2n—6)x+---(—1)

2n
. 1] cos 255] (77)

2n
Using equation (77) and the binomial coefficients B>" = [ " ] computed using equation

(75) gives

Geodesics — Bessel's method 26



sinz = l—10052:1:
2 2
sin’ z :§+lcos4x —%cost

. 1
sin® ¢ = i—iCOS&IZ —I—icoséla: —3—2603236

16 32

sin® z = 3 + LCos.8x - i(:os6av + lcos4x — lcost
128 128 16 32 16

sin' z = 63 Lcos. 10z + i(:os 8x — ﬂ(:os. 6x + Ecos 4 — @cos 2x (78)
256 512 256 512 64 256

Substituting equations (78) into equation (76) and arranging according to cos2z , cos4dx,

etc, we obtain (Rapp 1981, p. 7-8)
(1 + u” sin® :v)% = A+ Bcos2z + Ccosdzx + Dcosbx + Ecos8x + Fcosl0z +---  (79)

where the coefficients A, B, C, etc., are

Aoqa Ly 3 a5 0 AT 4Ly
4 64 256 16384 65536

B: _luz +iu4_£u6 35 US — 735 ulO +...
4 16 512 2048 65536
o B 35 105
64 256 4096 16384 (80)
Lo O s 3D g
D= ——u + u — (T
512 2048 131072
5 I BN BT
16384 65536
F = o 7 ul
131072

Substituting equation (79) into equation (71) gives
01+0
s =b f {A+ Bcos2z + C cosdz + D cosb6z + E cos8z + F cos10z + -} dz (81)
or

o to ot+o o1t+o 01+o0

%:A!dx+3!0052xdx+0!cos4:vdx+Daf0056xdx

l al+; o'1+la l (82)
+Ef COSS:L"da:—i-Ff cos10zxdx---
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The evaluation of the integral

o)+0

1 1

cosnzdr = —[sinnz|"" = —{sin n(o, + o) —sin nal} (83)
n ' n

Gt

combined with the trigonometric identity

sinnX —sinnY = 2cos sin

g(X-i—Y)

where X =0, +0 and ¥ =0, sothat X +Y =20, +0 and X —Y =0 gives

01+0

2
f cos nx dr = —cosno,, sin g o (84)
n

Noting that

sinn(a1 + o) —sinno, = 2008%(201 + O')SingO'

and with o = 0, —o,, then 20, + 0 =20, + (0, —0,) =0, + 0,

and putting o, = % (85)
then
200 =20, +0 (86)
and
sinn (o, + o) —sinno, = 2cosno,, singa (87)
Using this result, equation (82) becomes
% = Ao +B(cos20,, sinc) + C(3cosdo,, sin20) + D(+cosbo,, sin30)
+E (+cos8c,, sindo) + F(+cos100,, sin5o) + -
or re-arranged as (Rapp 1981, equation 39, p. 9)
: C : D .
s =b{Ao + Bcos20,, sino +—cos4o,, sin20 + —cos6o,, sin 30
2 3
B 7 (88)
+ZCOS 80, sin4o + = cos100,, sinbo + -- }
Equation (88) may be modified by adopting another set of constants; defined as
C D E F
B, =A4; B,=B; B4:5; BG:E; BSZZ; BIOZE (89)
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to give

s =b{Byo + B, cos20, sinc + B, cos4o,, sin20 + By cosbo,, sin 3o
+ B cos 80, sin4o + B, cos100,, sinbo + --- (90)

+ B,, cos2no,, sinno + ---}

where the coefficients B, B,, B,, ... are
BO — 1_|_ _uQ _iu4 + 5 uﬁ — 175 us ﬂulo —_— e
4 64 256 16384 65536
B2 — _lUZ _i_iu_/l _Eub +£u8 _ﬂulo _|_
4 16 512 2048 65536
B4 — _Luzl _i_iu(; _i 8 _|_10—5u10 —_
128 012 8192 32768
. IR T
1536 6144 393216
By = S N
65536 262144
By, = _Lulo
655360

Since each of these convergent series is alternating, an upper bound of the error committed
in truncating the series is the first term omitted — keeping terms up to u* only commits an

error of order 1"’ — and equation (90) can be approximated by

s =b{B,o + B, cos20, sinc + B, cosdo,, sin20 + B; cos6o,, sin 30

(91)
+B, cos8c,, sindo}
where
1 3 5 175

B =1+ —u* ——u* + u® — u®
0 4 64 256 16384

32 — _luz _|_iru/4 _ﬁu(; +£u8
4 16 512 2048
128 512 8192

B, = —Lu6 +iu8
‘ 1536 6144

B, = —Lu8
65536

The approximation (91) and the coefficients given by equations (92) are the same as
Rainsford (1955, equations 18 and 19, p.15) and also Rapp (1981, equations 40 and 41, p.
9).
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Equation (91) can be used in two ways which will be discussed in detail later. Briefly,

however, the first way is in the direct problem — where s, u* and o, are known — to solve

iteratively for o (and hence o, from 20, =20, +0;and = = 0, + 0 ) by using Newton-
Raphson iteration for the real roots of the equation f(o) =0 given in the form of an

iterative equation

/(o)

Oy = Oy — - 93
(n+1) n) ]N<U(m) ( )

where n denotes the n" iteration and f (o) can be obtained from equation (91) as

f(o) = B,o+B,cos20, sino + B, cos4o,, sin20 + B, cos6o,, sin 3o
. s (94)
+DB; cos80,, sindo — 5
N / d L
and the derivative f'(o) = d—{f(a)} is given by
o

f! ((T) = (1 + u” sin’ x)g (95)

1

[Note here that f (0’) is the result of integrating the function (1 + u® sin’ CB)E with respect
to dz; so then the derivative f’ (0) must be the original function.]

An initial value, o, (¢ for n =1) can be computed from o, = —°_ and the functions
0

f (a(l)> and f '(0(1)) evaluated from equations (94) and (95) using o,. 0, (o for n =2)
can now be computed from equation (93) and this process repeated to obtain values

O35 Oy ---- Lhis iterative process can be concluded when the difference between o, ,,

and o, reaches an acceptably small value.

)

The second application of equation (91) is in the inverse problem where s is computed once

o has been determined by spherical trigonometry.
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FORMULA FOR COMPUTATION OF LONGITUDE DIFFERENCE BETWEEN TWO
POINTS ON A GEODESIC

vertex

node

T auxiliary
sphere

Figure 14: Geodesic on auxiliary sphere

Figure 14 shows Pl/ and P/ on an auxiliary sphere (of unit radius) where latitudes on this

sphere are defined to be equal to parametric latitudes on the ellipsoid. P’ and P,'+1 are

arbitrary points on the geodesic (a great circle) between Pl/ and P/ separated by the

angular distance do .

Figure 15
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Figure 15 shows the differential spherical triangle P'N’ P/ broken into two right-angled
spherical triangles P'Q P!, and QN'P/

! . The great circle arc @ P, is defined as

cos v, dw , which is the differential arc length of the parallel of parametric latitude ).
Approximating the spherical triangle P'Q P/, with a plane right-angled triangle gives
cos ), dw = dosina; and

sin o,

dw = Ldo (96)
cos 1,
From equation (43)
sinq, = costy (97)
cos v,
and substituting equation (97) into (96) gives the relationship (dropping the subscript )
duo = <250 4, (98)
cos” P

Substituting equation (98) into equation (60) and re-arranging gives

N=

(1 — ¢’ cos’ zp)
d\ = cos ), do (99)
’ cos’

Subtracting equation (98) from equation (99) gives an expression for the difference
between differentials of two measures of longitude; dw on the auxiliary sphere and dA on

the ellipsoid

[

(1 — e’ cos’ zp) 1
cos” 1 cos” 1

d\ — dw = cos ), do (100)

[

Equation (100) can be simplified by expanding (1 — e’ cos’ zp)
(72)

using the binomial series

and from the previous development, the binomial coefficients Bf form a sequence

1-1 1-1-3  1-1-3.5 1-1-3-5-7  1:1:3-5-7-9
2.472.4.6° 2:4-6-8 2:4.6-8-10° 2-4-6-8-10-12°

17 la_
2
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Using these results

1 1 1-1 1-1-3
1—e’cos’ ) =1—=e*cos’ 1 — ——e* cos® ¥ — e’ cos®
( ¢) 2 v 2-4 v 2:4-6
_ﬂeg COSS ¢ —_ Melo COSH] ¢ + e (101)
2:4-6-8 2:-4-6-8-10
so that
1 —¢* cos? : .
( 5 w) = 12 —162—164C082¢—i6()c084w
cos” Y cos ¢ 2 8 16
5 8 6 7 10 8
———e°cos Y ———e " CcoS W+ - 102
128 v 256 v (102)

Now, subtracting from both sides of equation (102) gives a new equation whose

cos’

left-hand-side is the term inside the brackets [ ] in equation (100), and using this result we

may write equation (100) as
d\ — dw = cos ), {—162 — l64 cos” 1) — ie6 cos’ 9
2 8 16

5 8 6 7 10 8 }
———e°cos Y ———e " cos WY+ ---pdo 103
128 4 256 4 (103)

which can be re-arranged as

2

dw —d\— = %COS% {1 —|—i62 cos” 9 —I—%e4 cos’ 1

+— + — +.--3d 104
6 € COS w 198 € COs w g ( )

From equations (65) and (67) we have siny = sin(o, + o)sin¢, and z =0, + 0
respectively, which gives sin = sinzsin), and sin® 1 = sin’ zsin® 1), = 1 —cos’ 1. This

result can be re-arranged as
2 . 2 .9
cos” 1 =1—sin" ¢, sin” x

N 4¢_1_-2 <2 \? 6¢_1_-2w-23 8¢_1_-2¢-24

oW cos” 1) = sin” 1), sin” z) , cos ¥ = sin” 1), sin” z) , cos” Y = sin” 1), sin” z) ,
etc., and using the binomial series (74) we may write

4 2 2 =4 =4
cos' ¥ =1—2sin” ¢ sin” z 4 sin” ¢, sin” z
.92 ) .4 .4 . .
cos’ ¢ = 1 — 3sin® ¢y, sin® z + 3sin” ¢, sin’ 2 — sin® ¢y, sin’

8 <2 2 4 4 6 6 8 : 8
cos” P =1—4sin" 1, sin” z + 6sin” 9, sin” z —4sin” ¢, sin’ z + sin” ¢, sin” =
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Substituting these relationships into equation (104) and noting that dx = do gives

e’ 1 . :
dw —d\— = - cos W, {1 + 262 (1 — sin® ¢), sin® z)
1
+§e4 (1 — 2sin® 4, sin® z + sin" ¢, sin” 3:)

+6i466 (1 — 3sin’ ¢, sin® z + 3sin” ¢, sin’ x — sin’ ¢/, sin’ 1;)

7 8 .92 2 4 s 4
+—=e€" (1 —4sin sin” x + 6sin sin” z
T (1 asiny, "
—4sin° 4, sin’® x + sin® 1, sin® a:)
Now, expressions for sin®z, sin’ z, ... have been developed previously and are given in

equations (78). These even powers of sinz may be substituted into equation (105) to give

|
|

+ 3sin” 9, l§+lcos4x —1C082I
8 8 2

2

dw —d\— = 6?cos U, {1 + ieQ [1 —sin® ¢,

1 1
— ——cos2z
2 2

1, .o ‘1 1
+—e"(1—2sin — ——cos2z
8 ( % 2 2

+sin’ 1, P + lcos 4o — lCos 2z
8 8 2

5 .9 ll 1
+—e (1 — 3sin — — —cos2z
64 ( % 2 2

— sin’ 1), [i - icos6ac + i(zosllac - Ecos2x
16 32 16 32

|

—I—LGS [1 — 4sin* 9, [l—lcos%:
128 2 2

+ 6sin’ ¢, P—f—lcosélx —lCOSZZL’
8 8 2

— 4sin’ 1), li - i(:OSGx + icosélx - E(:05'236
16 32 16 32

+ sin® 9, lﬁ 4 cos8z — = cosba
128 128 16

—|—lcos4:1: — lcost
32 16

+--Ydx (106)
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Expanding the components of equation (106) associated with the even powers of e we have

1 1. 1.
Zez [1 — 581112 P, + 581112 1, cos 2z

1,
§e4 (1 —sin® ¢, + sin® ¢, cos 2z

1 1
—k%sin4 Y, + gsin4 Y, cosdx — Esin4 1, cos 2z

5 . .
6—466 (1 —sin® ¢, + sin® ¥, cos 2z

+ % sin’ v, + gsin4 1, cosdr — gsin4 1, cos 2z

16
Les (1 — sin® ¢, + sin® ¢, cos 2z
128
—|—%sin4 P, + %sirﬁ 1, cos 4z — 3sin’ 1, cos 2z
5 . 6 1 - 6 3 + 6
——sin’ ¢, + —sin’ ¥, cosb6x — —sin’ ¢, cos 4z
4 8 4
+ % sin® 4, cos 2z
35 .8 1 « 8 ]- .8
+——sin + ——sin" ¢, cos 8z — —sin" 1, cos 6x
157 gt 6" Yo

T . 7T .
‘|‘ —S1n COS 4£L’ — —S1n COS 2l'
132 % 16 Y

5 . 1. 3 . 15 .
——sin’ ), + ﬁsm6 1, cos b6z — T sin® ¢y, cos 4z + Esm6 1, cos 2z

(107)

(108)

(109)

(110)

Gathering together the constant terms and the coefficients of cos2z, cos4x, cosbx, etc. in

equations (107) to (110), we can write equation (106) as
2
dw —d\ = %cosqﬂO {Cy + C, cos2z + C, cos 4z + C; cos 6z + Cy cos 8z + -} dx

where the coefficients C, C,, C,, etc. are
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QV:1+i62+1€4+

16
75

5 6, T s

e —ef -
64 128

_64 +1_566 +168 +...
128 64

ﬂeﬁ ﬁeg + ...]Sin4 /lvb(]
512 512

ﬁe8 + ] sin® 9,

le2 +
8

3
—€
64

25
1024

25
16384

] sin® 1),

f +

512

+-~]$n8¢b
(112)

15
—e
128

‘+ £e
128

7 ] <2
646 + --+|sin” ¢,

l64 +
8

15
—e
128

105

“+
4

8-+~~]$n4¢h

6

1

2048
49
2048

—€
64
15
1024
49
1096

5

et + ] sin®
1024 %o

e’ + ] sin® 1,
(113)

15 ¢ 21 4
t——e +——e +--
512 512

21 4
+_€ +

512

4

]sin4 U,
]sin6 Y,
e’ + ] sin® 9,

(114)
7

6

o
1

+--

o

(&
2048
—68 + e
2048

—68 _|_ e
16384

et —|—--‘]sin6
1024 %

! ]sin8 U,

(115)

7

]sh18¢b-—-~- (116)

The longitude differences (spherical w minus geodetic \) are given by the integral

) r=0,+0
€
Aw— AN = Ecoswﬂ f

T=0]

{C, + C, cos2z + C, cos 4z + C; cosbz + C; cos 8z + -+ }dz (117)

where Aw = w, — w, is the difference in longitudes of P/ and P/ on the auxiliary sphere

and A\ =\, — ) is the difference in longitudes of P, and F, on the ellipsoid.
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Equation (117) has a similar form to equation (81) and the solution of the integral in
equation (117) can be achieved by the same method used to solve the integral in equation
(81). Hence, similarly to equation (88) and also Rapp (1981 equation (55), p. 13)

2
Aw— AX = Zcos U, {COO' + C,cos20,, sino + ﬂcos 40, sin2o0
2 2 | (118)

+ % cosb0,, sin 30 + % cos 80, sin4o + ---

Rainsford (1955, p. 14, equations 10 and 11) has the differences in longitudes Aw — A\ as
a function of the flattening fand the azimuth of the geodesic at the equator «,; noting

that from either equations (61) or (69) we may obtain the relationships
sin o, = cos ), (119)
1 —sin® o, = sin® 1), (120)

Also, since €’ = f(2— f) = 2f — f*, even powers of the eccentricity e can be expressed as

functions of the flattening f

¢ =2 f
64 — 4 2 4 3 + 4
f‘  +r r (121)
66 :8f3_12f4 +6fo_f6
et =16f" —32f° +24f° —8f" + f°
Re-arranging equation (118) and using equation (119) gives
e’ e e
Aw — AN =sinaq, {?Coa + ECQ cos20,, sino + ZC’4 cos4o, sin2c0
e e
+€CG cos 60, sin3o + gCg cos 8o, sindo + } (122)
62
Now, with equations (112) and (120) the coefficient ?CO can be written as
2 2
e_CO — 6__|_le4 _|_i66 _{_ieg R
2 2 8 16 128
— i64 + i66 + E68 ](1 — sin’ aE)
16 16 256
+ ieﬁ + ﬂeS =+ ](1 — SiIl2 OéE)2
128 1024
25 8 ] .92 3
—|——e 4|l —sin” «
2048 ( v)
4. (123)
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noting here that terms greater than e® have been ignored.
Using equations (121) in equation (123) with the trigonometric identity
cos’ o, +sin’ o, = 1 gives
2
e 7 .5
—C =f——Ff +-..-
5 Co=1 8f

1 2 1 3 ]- 4 3 5 ] 2
—\=/ =7 =7 —=] +-|cos"
rEARE AT A P

3 . 27T .. 8. ] \
I IR L L
6! Tel e’ €08 A

—\===J ——J +-fcos «
128‘f 64j? i

+oe (124)

Now for any geodetic ellipsoid e® ~ 2.01e-009 and f* ~1.26e-010, and since terms greater
than e® have been ignored in the development of equation (123) then no additional errors

will be induced by ignoring terms greater than f* in equation (124). Hence we define
e . 1 9 9
300 =f 1—Zf(1+f+f )Cos ay
3 2[ 9 ] ’
+—/ |1+~ f|cos"
6! el 5
—ﬁf3 cos’ ozE} (125)
Using similar reasoning we also define

éC’2 = f«|lf(1+f+f2)cos2 ay —ifQ [l—k%f]cos4 o' +275_56f3 cos’ aE} (126)

2 4

e 1 9 15

ZC4 Ef{ﬁfz [1+Zf]cos4 oy —%f‘n’ cos’ aE} (127)
e’ S
EC’G = f{%f3 cos’ aE} (128)

Using equations (125) to (128) enables equation (122) to be approximated by

Aw — AX = fsinay, {40 + A, cos20,, sino + A, cos4do,, sin20 + 4; cos6o,, sin 30} (129)

where Aw = w, — w, is the difference in longitudes of P/ and P, on the auxiliary sphere
and A\ =)\, — )\ is the difference in longitudes of P, and P, on the ellipsoid, and the

coefficients are
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1 2 2 3 2[ 9] 4 25 3 6
=1——f(1+f+ cos"a, +—f|1+—f|cos" a,———f’cos’ «
Ay =1 f(U F 4 ) eos” ap 5 P12 f feos® @ o’

A :lf(1+f+f2>0052aE —lf2 [1+gf]cos4 ay +—75 f?cos’ o,
Z 4 4 256 130
1 9 15 ; (130)
A = 5f2 [1—|—Zf]cos4 Qg —%fg cos’ a,

5 3 6
=—f" cos
A 763 f Qp
The approximation (129) and the coefficients (130) are the same as Rainsford (1955,
equations 10 and 11, p. 14) and also Rapp (1981, equation 56, p. 13).

Equation (129) can be used in two ways which will be discussed in detail later. Briefly,

however, the first way is in the direct problem — after o (and o,, from 20, =20, +0)

has been solved iteratively — to compute the difference Aw — AX. And in the inverse

problem to compute the longitude difference iteratively.

VINCENTY'S MODIFICATIONS OF RAINSFORD'S EQUATIONS

In 1975, T. Vincenty (1975) produced other forms of equations (91) and (129) more suited
to computer evaluation and requiring a minimum of trigonometric function evaluations.

These equations may be obtained in the following manner.

Vincenty's modification of Rainsford's equation for distance

The starting point here is equation (91) [Rainsford's equation for distance] that can be re-

arranged as

o= B, cos20, sino — B, cos4o,, sin20 — By cosb0,, sin 30
bB, B, B, B,
B, .
——cos80,, sindo (131)
BO
or
o =—+Ac (132)
bB,
where
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B . B, . B .
Ao = ——2co0s20, sinoc — —=-cos4o, sin20 — —>cos6o,, sin 30
0 0 0

_B cos 80, sindo (133)
0
Now, from equations (92) B, =1+ —u’ —iu4 + > u’ — 175 u® =1+ and
4 64 256 16384
B% = (14 2)". Using a special case of the binomial series [equation (72) with 3 = —1 and
0
with |21 < 1]

allows us to write

2 3
B, 4 64 4 4 4 64
4
4 64
Ll T 15 5 579

U U+ U
4 64 256 16384
and using this result gives

B, [—lzﬂ Lo 15 5 35 u8—.-.][1—1u2+1u4 15 o 519 .
B, 4 16 512 2048

L Lo 3T 6, 4T
4 8 512 1024

Similarly, the other ratios are obtained and

1, 1, 3T AT

&— U t+—=u u + u =

B, 8 512 1024

B, _ —1u4—|—1u6—27u8

B, 128 128 4096 (134)
Bﬁ 1 6 1 8

B, 1536 1024

B _ 5

B 65536

(==}

For a geodesic on the GRSS80 ellipsoid, having a, = 0° (which makes u’ a maximum) and

with ¢ =22.5°, o, = 22.5° (which makes cos8c, sin4o = 1) the maximum value of the

last term in equations (131) and (133) is %COS 80, sindo = 1.5739827¢-013 radians .

0
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This is equivalent to an arc length of 0.000001 m on a sphere of radius 6378137 m. This

term will be ignored and Ao is defined as

Ao =— 5 cos20, sino — B, cosdo, sin20 — By cos 6o, sin 30 (135)
0 0 0

Now, using the trigonometric identities
sin2A4 = 2sin Acos A cos2A =2cos’ A —1
sin3A = 3sin A — 4sin® A cos3A = 4cos’ A —3cos A
then
cos4A =2cos’24 — 1
cos6A = 4cos’ 24 — 3cos24
and using these identities in equation (135) gives

Ao =— &COS 20, sino — B, (2 cos’ 20, — 1) (2sino coso)
0 0

_5B <4 cos’ 20, — 3 cos 2am> <3 sino — 4sin’ 0')

0

which may be written as

Ao = sina{—&coﬂam — 2ﬂ0080'<2 cos’ 20, — 1)
0 0

(136)
—&COS 20, (3 — 4sin® O') (4 cos’ 20, — 3)}
0
Now
2
_BQ — iuﬂl _i 6_|_ 53_ 8_...
B, 16 16 1024 (137)
_BQ — iuﬁ 9 8+
B, 64 128
Comparing equations (137) with equations (134) we have
(B L 5t
B,) ~ 64" 64" 4096
2
l _B2 _ Lu4 ]_ + 53 8
4| B, 64 64" 4006
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and these two equations differ by

8 . . .
v~ which would be equivalent to a maximum error

of 5.0367e-013 radians or 0.000003 m on a sphere of radius 6378137 m. Ignoring this small

difference, we define

2
_2[ 4] 1[_ 2]
B,) 4| B,

Again, comparing equations (137) with equations (134) we have

— & — Luﬁ +Lu8
1536 1024

1[—32]2 1 4 3

(138)

R e U
24\ B, 1536 3072
and noting that u® = u® we may sa
T YR 7o R
3
_| B = 1|5, (139)
B,] 24| B,
Using equations (138) and (139) we may write equation (136) as
2
Ao =sino —5 cos20, + 1125 coso (2 cos’ 20, — 1)
BO 4 0
1 (-B,)
+—|—2| cos20,, (3 — 4sin’ U) (4 cos’ 20, — 3)
24| B,
We may now express the great circle arc length o as
s
o =— +Aco 140
bA/ ( )
where
Ao =B'sino {cos 20 + iB'[cosa(? cos’ 20, — 1)
. (141)
——DB'cos20,, (—3 + 4sin’ U) (—3 + 4 cos’ 20m) }
6
and
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A'= B, :1—{_%“2_3 Y4

" 5 ¢ 175
64

U — U
256 16384

4096 768 320 175
U — u + U — U
16384 16384 16384 16384

2

Uu
=1+ (4096 + w* (768 + u* (320 — 1750 ) (142)
B/:_BQ :lu2—lu4—|—£ 6 47 8

U ———1U
B, 4 8 512 1024
256 , 128 , T4 o 4T

= u — u + U — U
1024 1024 1024 1024

2
u

T 1024

(256 + u* (—128 + u* (74 — 47u?))) (143)

Equations (140) to (143) are the same as those given by Vincenty (1975, equations 7, 6, 3
and 4, p. 89). Vincenty notes in his paper that these equations were derived from
Rainsford's inverse formula and that most significant terms in u® were retained, but he

gave no outline of his method.

Vincenty's modification of Rainsford's equation for longitude difference

The starting point here is equation (129) [Rainsford's equation for longitude differences]
with coefficients A4, 4,,4, and A;. Referring to this equation, Rainsford (1955, p. 14)
states:

“The A coefficients are given as functions of fsince they converge more rapidly than when
given as functions of ¢’. The maximum value of any term in f* (i.e. f° in the A's) is less

than 0”.00001 even for a line half round the world. Thus the A; term may be omitted

altogether and the following simplified forms used even for precise results:”
Rainsford's simplified formula is
Aw— AN = fsina, {A(fa + A) cos20,, sino + A| cos4o,, sin 20} (144)

where Aw = w, — w, is the difference in longitudes of P/ and P, on the auxiliary sphere
and AX = )\, — )\ is the difference in longitudes of P, and P, on the ellipsoid, and the

coefficients are
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Al = 1—lf(1—|—f)COSQOéE —if20054aE
Al = (1—|— f)cos® a, ——f cos’ ay (145)
Al = Lf2 cos’ a
4 32 E
Equation (144) can be written as

/ /
Aw— AN = Alfsina, {0+ %COS 20, sino + %cos 4o, sin 20} (146)

Using the trigonometric double angle formulas sin2A4 = 2sin Acos A, cos2A4 = 2cos’ A —1

we can write
sin20 = 2sino coso

2
cosdo, = 2cos 20, —1

and equation (146) becomes

/ /
Aw— AN = AﬂfSHlOéE{O'-F%COSQO’ Slna-l—ﬁo(Zcos 20, 1)(25inacoso)}

m

/ /
= Alfsina, {0 +sino %COSQO’ + Q%COSU(Q cos’ 20, 1)H (147)

Now the coefficient A, may be re-arranged as follows
!/ 1 2 3 2 4
A =1——=f(1+ f)cos” ay +—f" cos” ay
4 16
=1- [4 f(+ f)cos® —if cos' o ]
e To16 ’
f
=1- ECOSQ ay (4(1+ f) = 3fcos’ ay)
f
=1- ECOSQ ay (4 + f(4 — 3cos’ aE))
or

A=1-C

where
C = %COS2 oy (4 + f<4 — 3cos’ aE)>

Now using these relationships and a special result of the binomial series [equation (72)

with z = —C' and ( = —1] we may write
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—:1—:(1—0)*l =1+C+C*+C° +
and
%:ifCOSQaE-I—ifQCos?aE—%f2cos4aE+%f3cos4aE+...
L)

Ignoring terms greater than f* (greater than f° in we have

1 1 3
% EZfCOSQOéE -l-ZfQCOS?OéE —EfQCOS4()éE
1];008 oy <4+f<4 3 cos’ aE))
=C
Also
Al

1 1
= — f* cos aE+Ff cos’ a; + -

Al 32
AI
and ignoring terms greater than f° (greater than f* in —%) we have
)

/ /
i—if cos’ a, and 2A—:%f20054aE

Al 32 A

Now
c? :ifgcos‘la +lf3cos4a —ifg’cosﬁa + e
16 P8 "2 3
and ignoring terms greater than f° (greater than f* in C*) we have

!/
02—%]” cos ozE—Qjﬂl

Using these results we may write equation (147) as

AN=Aw—(1-C)fsina, {a + C’sina[cos?am + C’cosa(—l + 2 cos’ 20m)]} (148)

where Aw = w, — w, is the difference in longitudes of P/ and P/ on the auxiliary sphere

and A\ = )\, — )\ is the difference in longitudes of P, and P, on the ellipsoid, and

C :%cos2 oy (4%—]"(4—30082 aE)) (149)
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Equations (148) and (149) are essentially the same as Vincenty (1975, equations 11 and 10,
p.89) — Vincenty uses L and A\ where we have used A\ and Aw respectively — although

he gives no outline of his method of deriving his equations from Rainsford's.

SOLVING THE DIRECT AND INVERSE PROBLEMS ON THE ELLIPSOID USING
VINCENTY'S EQUATIONS

Vincenty (1975) set out methods of solving the direct and inverse problems on the
ellipsoid. His methods were different from those proposed by Rainsford (1955) even
though his equations (140) to (143) for spherical arc length ¢ and (148) and (149) for
longitude A were simplifications of Rainsford's equations. His approach was to develop
solutions more applicable to computer programming rather than the mechanical methods
used by Rainsford. Vincenty's method relies upon the auxiliary sphere and there are
several equations using spherical trigonometry. Since distances are often small when
compared with the Earth's circumference, resulting spherical triangles can have very small
sides and angles. In such cases, usual spherical trigonometry formula, e.g., sine rule and
cosine rule, may not furnish accurate results and other, less common formula, are used.

Vincenty's equations and his methods are now widely used in geodetic computations.

In the solutions of the direct and inverse problems set out in subsequent sections, the

following notation and relationships are used.
a, f semi-major axis length and flattening of ellipsoid.

b semi-minor axis length of the ellipsoid, b = a(1— f)

2

e’ eccentricity of ellipsoid squared, ¢’ = f(2 — f)

2
€

1—¢°

e* 2nd-eccentricity of ellipsoid squared, e”> =

¢, A\ latitude and longitude on ellipsoid: ¢ measured 0° to +90° (north latitudes

positive and south latitudes negative) and A measured 0° to +180° (east

longitudes positive and west longitudes negative).
s length of the geodesic on the ellipsoid.

oy, o, azimuths of the geodesic, clockwise from north 0° to 360°;c, in the direction

P P, produced.
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oy, azimuth of geodesic PF,; o, =
a,, reverse azimuth; azimuth of geodesic P,P; «a,, = a, £180°
o, azimuth of geodesic at the equator, sina, = cos),
u’ = e sin® 1),
Y parametric latitude, tany = (1 — f)tan¢
1, parametric latitude of geodesic vertex, cost, = cosysina = sinq,

Y,w latitude and longitude on auxiliary sphere: 1) measured 0° to +90° (north

latitudes positive and south latitudes negative) and w measured 0° to =+ 180°

(east longitudes positive and west longitudes negative).
AN Aw longitude differences; AX =\, — A (ellipsoid) and Aw = w, —w, (spherical)
o angular distance (great circle arc) P/P/ on the auxiliary sphere.

tan v,

cos qy

o, angular distance from equator to P/ on the auxiliary sphere, tano, =

angular distance from equator to mid-point of great circle arc P'P/ on the

m

auxiliary sphere, 20, =20, + 0o

THE DIRECT PROBLEM ON THE ELLIPSOID USING VINCENTY'S EQUATIONS
Using Vincenty's equations the direct problem on the ellipsoid

[given latitude and longitude of P, on the ellipsoid and azimuth «;, and geodesic
distance s to P, on the ellipsoid, compute the latitude and longitude of P, and the

reverse azimuth o, |

may be solved by the following sequence.

2

With the ellipsoid constants a, f, b=a(1—f), e’ = f(2— f) and €”* = and given

2

o\, =y, and s
1.  Compute parametric latitude 1, of P, from

tany, = (1— f)tang,
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Compute the parametric latitude of the geodesic vertex 1), from
cos 1, = cos, sinqy
Compute the geodesic constant »* from
u’ = e’?sin® 1),
Compute angular distance o, on the auxiliary sphere from the equator to P’ from

tan ),

cos qy

tano, =

Compute the azimuth of the geodesic at the equator «,, from
sinay, = cos), = cos Y, sinqy

Compute Vincenty's constants A’ and B’ from

2

A =14 167;84 (4096 + u* (=768 + u” (320 — 1750*)))
om0

Compute angular distance o on the auxiliary sphere from P/ to ]32/ by iteration

using the following sequence of equations until there is negligible change in o

20, =20, +o0

Ao = B'sina{cos 20 + iB’[cosa@ cos’ 20, — 1)

- éB’ cos20,, (=3 + 4sin’ ) (-3 + 4 cos’ 20, )

!

The first approximation for ¢ in this iterative solution can be taken as o ~ —

S
g :H+AU

bA’
After computing the spherical arc length o the latitude of P, can be computed using
spherical trigonometry and the relationship tan¢, = _(tlan ch“’)

sin 1), cos o + cos 1), sin o cos o,

tan g, =

(1-— f)\/s,in2 oy + (sin, sino — cos ¢, coso cos )2

Compute the longitude difference Aw on the auxiliary sphere from

sin o sin ¢

tan Aw = - -
cos 1), cos o — sin ), sin o cos ¢
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10.

11.

12.

13.

Compute Vincenty's constant C from
C = %cos2 oy (4 + f(4 — 3cos’ aE>)
Compute the longitude difference AX on the ellipsoid from
AN=Aw—-(1-C)fsina, {(T + Csina[cosZam + Ccosa(—l + 2 cos’ 20m)}}

Compute azimuth «, from

sin oy,

tan o, = - -
coS 1), cos o cosqy — sin ), sino

Compute reverse azimuth o,

o, = o, £180°

Shown below is the output of a MATLAB function Vincenty Direct.m that solves the

direct problem on the ellipsoid.

The ellipsoid is the GRS80 ellipsoid and ¢, for P are —45° and 132° respectively with

oy, = 1°43'25.876544"” and s = 3880275.684153 m. ¢, A computed for P, are —10° and

133°

respectively with the reverse azimuth a,, = 181°14’22.613213"

>> Vincenty Direct

LI11177777777777/7777777/7/7777////777/////77777/7
// DIRECT CASE on ellipsoid: Vincenty"s method //
L111177777777777/7777777/7/7777///7777////77777/7

ellipsoid parameters

a
L

b
e2
ep2

6378137.000000000
1/298.257222101000
6356752.314140356100
6.694380022901e-003
6.739496775479e-003

Latitude & Longitude of P1
latP1 = -45 0 0.000000 (D M S)

lonP1

=132 0 0.000000 (D M S)

Azimuth & Distance P1-P2

azl2
S

1 43 25.876544 (D M S)
3880275.684153

Parametric Latitude of P1
psiPl = -44 54 13.636256 (D M S)

Parametric Latitude of vertex PO
psiPO = 88 46 44.750547 (D M S)

Geodesic constant u2 (u-squared)

u2 =

6.736437077728e-003
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angular distance on auxiliary sphere from equator to P1-
sigmal = -7.839452835875e-001 radians

Vincenty"s constants A and B
A = 1.001681988050e+000

B = 1.678458818215e-003

angular distance sigma on auxiliary sphere from P1" to P2*
sigma = 6.099458753810e-001 radians

iterations = 5

Latitude of P2
latP2 = -10 O 0.000000 (D M S)

Vincenty"s constant C
C = 8.385253517062e-004

Longitude difference P1-P2
dlon = 1 0 0.000000 (D M S)

Longitude of P2
lon2 = 133 0 0.000000 (D M S)

Reverse azimuth
alpha2l = 181 14 22.613213 (D M S)

>>

THE INVERSE PROBLEM ON THE ELLIPSOID USING VINCENTY'S EQUATIONS

Using Vincenty's equations the inverse problem on the ellipsoid

[given latitudes and longitudes of P, and P, on the ellipsoid compute the forward

and reverse azimuths «,, and «,, and the geodesic distance s

may be solved by the following sequence.

- and given

With the ellipsoid constants a, f, b=a(1—f), e’ = f(2— f) and &”* = ! c
@, and ¢y, \

1.  Compute parametric latitudes 1, and ¢, of P, and P, from

tany = (1— f)tan¢

2. Compute the longitude difference A\ on the ellipsoid

A=\ — )\
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Compute the longitude difference Aw on the auxiliary sphere between P/ to PQ/ by
iteration using the following sequence of equations until there is negligible change in
Aw. Note that o should be computed using the atan2 function after evaluating

sino = +/sin’ ¢ and coso. This will give —180° < o < 180°.

sin® o = (cos ¢, sin Awf + (cos ¢, sin 1), — sin i, cos i, cos Aw)2

cos o = sin 1), sin vy, + cos Y, cos 1, cos Aw

sin o
tano =
cos o
) cos 1, cos 1, sin Aw
sin o, = % - 2
sin o
2sin 1), sin
cos20, = coso — M
cos” oy

C= %cos2 oy (4 + f(4 — 3cos’ aE))
Aw=AN+(1-C)fsinq, {0‘ + C’Siﬂd[cosQam + Ccosa(—l + 2 cos” 20,,")]}

The first approximation for Aw in this iterative solution can be taken as Aw ~ A\
Compute the parametric latitude of the geodesic vertex 1), from

cos 1, = sinay,
Compute the geodesic constant u” from

u’ = e’* sin® 1),

Compute Vincenty's constants A" and B’ from

2
Uu

16384

2
/ u

T 1024

A =1+

(4096 + u? (~768 + u* (320 — 1750

(256 + u* (—128 + u* (74 — 47w?)))
Compute geodesic distance s from

+ 1 B’ [COS o (2 cos’ 20, — 1)
4

m

Ao = B’sina{cos 20

— éB’ cos20,, (—3 + 4sin’ 0)(—3 + 4 cos’ 20, )

|

s =bA(c — Ao)
Compute the forward azimuth o, = o, from

cos Y, sin Aw

tano, =
' cosaf sine), — sin 4, cos 1, cos Aw
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9.  Compute azimuth o, from

cos ¥, sin Aw

tan o, =

—sin v, cos ), + cos ), sin ), cos Aw

10. Compute reverse azimuth o,

a,, = o, £180°

Shown below is the output of a MATLAB function Vincenty Inverse.m that solves the

inverse problem on the ellipsoid.

The ellipsoid is the GRS80 ellipsoid. ¢,\ for P, are —10° and 110° respectively and ¢, A

for P, are —45° and 155° respectively. Computed azimuths are «a;, = 140° 30" 03.017703"

and «,, = 297°48'47.310738" , and geodesic distance s = 5783228.548429 m .

>> Vincenty_Inverse

LI11177777777777777777777/777777//7/777////777////7777
// INVERSE CASE on ellipsoid: Vincenty"s method //
L1111 1777777777777//7777777/7/777/////777///7/777/77/

ellipsoid parameters

a = 6378137.000000000

T = 1/298.257222101000

b = 6356752.314140356100
e2 = 6.694380022901e-003
ep2 = 6.739496775479e-003

Latitude & Longitude of P1
latP1 = -10 O 0.000000 (D M S)
lonP1 = 110 O 0.000000 (D M S)

Latitude & Longitude of P2
latP2 -45 0 0.000000 (D M S)
lonP2 = 155 0 0.000000 (D M S)

Parametric Latitudes of P1 and P2
psiP1l -9 58 1.723159 (D M S)
psiP2 = -44 54 13.636256 (D M S)

Longitude difference on ellipsoid P1-P2
dlon = 45 0 0.000000 (D M S)

Longitude difference on auxiliary sphere P1*-p2*

domega = 9.090186019005e-001 radians
iterations = 5

Parametric Latitude of vertex PO
psiPO = 51 12 36.239192 (D M S)

Geodesic constant u2 (u-squared)
u2 = 4.094508823114e-003

001022842684e+000

ncenty"s constants A and B
= 1.
= 1.021536528199e-003

Vi
A
B
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Azimuth & Distance P1-P2
azl2 = 140 30 3.017703 (D M S)
S 5783228.548429

Reverse azimuth
alpha2l = 297 48 47.310738 (D M S)

>>

EXCEL WORKBOOK vincenty.xls FROM GEOSCIENCE AUSTRALIA

Geoscience Australia has made available an Excel workbook vincenty.xls containing four
spreadsheets labelled Ellipsoids, Direct Solution, Inverse Solution and Test Data. The Direct Solution
and Inverse Solution spreadsheets are implementations of Vincenty's equations. The Excel
workbook vincenty.xls can be downloaded via the Internet at the Geoscience Australia
website (http://www.ga.gov.au/) following the links to Geodetic Calculations then Calculate
Bearing Distance from Latitude Longitude. At this web page the spreadsheet vincenty.xls is
available for use or downloading. Alternatively, the Intergovernmental Committee on
Surveying and Mapping (ICSM) has produced an on-line publication Geocentric Datum of
Australia Technical Manual Version 2.2 (GDA Technical Manual, ICSM 2002) with a link

to vincenty.xls.

The operation of vincenty.xls is relatively simple, but since the spreadsheets use the Excel
solver for the iterative solutions of certain equations then the lteration box must be checked
on the Calculation sheet. The Calculation sheet is found under Tools/Options on the Excel
toolbar. Also, on the Calculation sheet make sure the Maximum change box has a value of

0.000000000001.

The Direct Solution and Inverse Solution spreadsheets have statements that the spreadsheets

have been tested in the Australian region but not exhaustively tested worldwide.

To test vincenty.xls, direct and inverse solutions between points on a geographic rectangle
ABCD covering Australia were computed using vincenty.xls and MATLAB functions
Vincenty Direct.m and Vincenty Inverse.m. Figure 16 shows the geographic rectangle
ABCD whose sides are the meridians of longitude 110° and 155° and parallels of latitude

—10° and —45°. Several lines were chosen on and across this rectangle.
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Figure 16: Geographic rectangle covering Australia

P, P, azimuth o distance s
— —10° — 10 a,, = 94° 06’ 55.752182" 1020703675 416
S = . m
A =110° A\ =155 a,, = 265° 53/ 04.247 818"
—_10° — _45° a,, = 140° 30'03.017 703" 793998 548 420
s = . m
A =110° A\ =155° oy, = 297° 48'47.310738"
——10° — _45° a,, = 180° 00’ 00.000 000" 5970080544 650
S = . m
A =110° A =110° a,, = 0° 00" 00.000 000"
— —10° — _45° a,, = 219°29'56.982297" 793998 548 40
s = . m
A\ = 155° =110 a,, = 62°11'12.689262"
— —45° — _10° oy, = 1°43'25.876 544" 5880275 684 153
S = . m
A =132° A\ =133° a,, = 181°14/22.613213"
= —35° — _36° a,, = 105° 00'10.107 712" 047 491887 103
s = . m
A =110° A\ =155° a,, = 257° 56’ 53.869209"

Table 1: Geodesic curves between P, and P, on the GRS80 ellipsoid
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Table 1 shows a number of long geodesics that are either bounding meridians of the
rectangle or geodesics crossing the rectangle. All of these results have been computed
using the MATLAB function Vincenty Inverse.m and verified by using the MATLAB
function Vincenty Direct.m. Each of the lines were then computed using the Inverse
Solution spreadsheet of the Excel workbook vincenty.xls; all azimuths were identical and the
differences between distances were 0.000002 m on one line and 0.000001 m on two other
lines. Each of the lines were then verified by using the Direct Solution spreadsheet (all
computed latitudes and longitudes we in exact agreement). It could be concluded that the
Excel workbook vincenty.xls gives results accurate to at least the 5th decimal of distance and

the 6th decimal of seconds of azimuth for any geodesic in Australia.

Vincenty (1975) verifies his equations by comparing his results with Rainsford's over five
test lines (Rainsford 1955). On one of these lines — line (a) ¢, = 55°45", \, = 0°00’,

a,, = 96° 36’ 08.79960" , s =14110526.170 m on Bessel's ellipsoid a = 6377397.155 m
1/f = 299.1528128 — Vincenty finds his direct solution gives ¢, = —33°2600.000012",

A\, = 108°13'00.000007” and «,, = 137°52'22.014528”. We can confirm that the

MATLAB function Vincenty Direct.m also gives these results, but it is interesting to note

that the Direct Solution spreadsheet of the Excel workbook vincenty.xls does not give these

results. This is due to the Excel solver — used to determine a value by iteration —
returning an incorrect value. Whilst the error in the Excel solver result is small, it is,
nonetheless, significant and users should be aware of the likelihood or erroneous results

over very long geodesics using vincenty.xls.

MATLAB FUNCTIONS

Shown below are two MATLAB functions Vincenty Direct.m and Vincenty Inverse.m
that have been written to test Vincenty's equations and his direct and inverse methods of

solution. Both functions call another function DMS.m that is also shown.
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MATLAB function Vincenty Dairect.m

function Vincenty Direct

% Vincenty_Direct computes the "direct case" on the ellipsoid using
% Vinventy"s method.

% Given the size and shape of the ellipsoid and the latitude and

% Mlongitude of P1 and the azimuth and geodesic distance of P1 to P2,
% this function computes the latitude and longitude of P2 and the

% reverse azimuth P2 to P1.

% Function: Vincenty Direct

% Useage: Vincenty_Direct;

% Author:

% Rod Deakin,

% Department of Mathematical and Geospatial Sciences,
% RMIT University,

% GPO Box 2476V, MELBOURNE VIC 3001

% AUSTRALIA

% email: rod.deakin@rmit.edu.au

% Date:

% Version 1.0 2 March 2008
% Functions Required:

% [D,M,S] = DMS(DecDeg)

% Remarks:

% This function computes the DIRECT CASE on the ellipsoid. Given the size
% and shape of an ellipsoid (defined by parameters a and f, semi-major

% axis and flattening respectively) and the latitude and longitude of P1

% and the azimuth (azl2) P1 to P2 and the geodesic distance (s) Pl to P2,
% the function computes the latitude and longitude of P2 and the reverse

% azimuth (az21) P2 to P1. Latitudes and longitudes of the geodesic

% vertices PO and PO" are also output as well as distances and longitude

difference from P1 and P2 to the relevant vertices.

References:

[1] Deakin, R.E, and Hunter, M.N., 2007.

"Geodesics on an Ellipsoid -

Bessels®™ Method®, School of Mathematical and Geospatial Sciences,
RMIT University, January 2007.

[2] Vincenty, T., 1975.

"Direct and Inverse solutions of geodesics on

the ellipsoid with application of nested equations®, Survey
Review, Vol. 23, No. 176, pp-88-93, April 1975.

% Variables:

% a semi-major axis of ellipsoid

% A Vincenty"s constant for computation of sigma
% alphal azimuth P1-P2 (radians)

% azl2 azimuth P1-P2 (degrees)

% az2l azimuth P2-P1 (degrees)

% b semi-minor axis of ellipsoid

% A Vincenty"s constant for computation of sigma
% cos_alphal cosine of azimuth of geodesic P1-P2 at P1

% dlambda longitude difference P1 to P2 (radians)

% domega longitude difference P1" to P2" (radians)

% d2r degree to radian conversion factor

% e2 eccentricity of ellipsoid squared

% ep2 2nd eccentricity squared

% F flattening of ellipsoid

% Flat denominator of flattening, T = 1/flat

% lambdal longitude of P1 (radians)

% lambda2 longitude of P2 (radians)

% latl latitude of P1 (degrees)
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% lat2 - latitude of P2 (degrees)

% lonl - longitude of P1 (degrees)

% lon2 - longitude of P2 (degrees)

% phil - latitude of Pl (radians)

% phi2 - latitude of P2 (radians)

% pion2 - pi/2

% psio - parametric latitude of PO (radians)

% psil - parametric latitude of P1 (radians)

% psi2 - parametric latitude of P2 (radians)

% s - geodesic distance P1 to P2

% sigmal - angular distance (radians) on auxiliary sphere from
% equator to P1*

% sin_alphal - sine of azimuth of geodesic P1-P2 at P1
% twopi - 2*pi

% u2 - geodesic constant u-squared

% Define some constants

d2r = 180/pi;

twopi = 2*pi;

pion2 = pi/2;

% Set defining ellipsoid parameters

a = 6378137; % GRS80
flat = 298.257222101;

% a = 6377397.155; % Bessel (see Ref [2], p-91)
% flat = 299.1528128;

% Compute derived ellipsoid constants
T = 1/flat;

b =a*1-f);

e2 = f*(2-1);

ep2 = e2/(1-e2);

-45;
132;

% lat and lon of P1 (radians)
phil = latl/d2r;
lambdal = lonl/d2r;

azl2 = 1 + 43/60 + 25.876544/3600;

%

% azimuth of geodesic P1-P2 (radians)
alphal = az12/d2r;

% sine and cosine of azimuth P1-P2
sin_alphal sin(alphal);
cos_alphal cos(alphal);

S = 3880275.684153;

% [1] Compute parametric latitude psil of P1
psil = atan((1-f)*tan(phil));

% [2] Compute parametric latitude of vertex
psi0 = acos(cos(psil)*sin_alphal);
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% [3] Compute geodesic constant u2 (u-squared)
u2 = ep2*(sin(psi0)”"2);

% [4] Compute angular distance sigmal on the auxiliary sphere from equator
% to P1*
sigmal = atan2(tan(psil),cos_alphal);

% [5] Compute the sine of the azimuth of the geodesic at the equator
sin_alphaE = cos(psiO);

% [6] Compute Vincenty"s constants A and B
A = 1 + u2/16384*(4096 + u2*(-768 + u2*(320-175*u2)));
B = u2/1024*(256 + u2*(-128 + u2*(74-47*u2)));

% [7] Compute sigma by iteration
sigma = s/(b*A);
iter = 1;
while 1
two_sigma_m = 2*sigmal + sigma;

sl = sin(sigma);
s2 = sl*sl;
cl = cos(sigma);

cl 2m = cos(two_sigma_m);
c2_2m = cl_2m*cl_2m;

tl = 2*c2_2m-1;
12 = -3+4*s2;
t3 = -3+4*c2_2m;

delta_sigma = B*sl1*(cl_2m+B/4*(cl*tl-B/6*cl_2m*t2*t3));

sigma_new = s/(b*A)+delta_sigma;

ifT abs(sigma_new-sigma)<le-12

break;

end;

sigma = sigma_new;

iter = iter + 1;
end;
sl
cl

sin(sigma);
cos(sigma);

% [8] Compute latitude of P2

y = sin(psil)*cl+cos(psil)*sl*cos_alphal;

X (1-F)*sqgrt(sin_alphaeE™2+(sin(psil)*sl-cos(psil)*cl*cos_alphal)”"2);
phi2 = atan2(y,x);

lat2 = phi2*d2r;

% [9] Compute longitude difference domega on the auxiliary sphere
y = sl*sin_alphal;

X = cos(psil)*cl-sin(psil)*sl*cos_alphal;

domega = atan2(y,x);

XX

% [10] Compute Vincenty"s constant C
= 1-sin_alphaE"2;
= f/16*x*(4+F*(4-3*x));

O X

% [11] Compute longitude difference on ellipsoid

two_sigma_m = 2*sigmal + sigma;

cl 2m = cos(two_sigma m);

c2_2m = cl_2m*cl_2m;

dlambda = domega-(1-C)*f*sin_alphaE*(sigma+C*sl1*(cl_2m+C*cl*(-1+2*c2_2m)));
dlon = dlambda*d2r;

lon2 = lonl+dlon;

% [12] Compute azimuth alpha2

y = sin_alphaE;

X = cos(psil)*cl*cos_alphal-sin(psil)*sl;
alpha2 = atan2(y,x);

% [13] Compute reverse azimuth az21
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az21 = alpha2*d2r + 180;
if az21 > 360

az21 = az21-360;
end;

% Print computed quantities, latitudes and azimuth

fprintf("\n//////////7//7////7/77777/7/7/77777/77/7777777777777);
fprintf("\n// DIRECT CASE on ellipsoid: Vincenty""s method //%);
fprintf(°"\n/////////////7/7//7/7/77/777/777/77777/777777777777777);
fprintf("\n\nellipsoid parameters®);

fprintf(*\na = %18.9f",a);
fprintf("\nf = 1/%16.12F" ,flat);
fprintf("\nb = %21.12F",b);
fprintf("\ne2 = %20.12e",e2);
fprintf("\nep2 = %20.12e",ep2);

fprintf("\n\nLatitude & Longitude of P1%);
[D,M,S] = DMS(latl);
if D==0 && latl<0

fprintf(*\nlatPl1 = -0 %2d %9.6Ff (D M S)",M,S);
else

fprintf("\nlatPl = %3d %2d %9.6Ff (D M S)",D,M,S);
end;
[D,M,S] = DMS(lonl);
if D==0 && lonl<0

fprintf(*\nlonP1 = -0 %2d %9.6Ff (D M S)",M,S);
else

fprintf("\nlonP1 = %3d %2d %9.6Ff (D M S)",D,M,S);
end;
fprintf("\n\nAzimuth & Distance P1-P2%);
[D,M,S] = DMS(azl2);
fprintf("\nazl2 = %4d %2d %9.6Ff (D M S)",D,M,S);
fprintf("\ns %17.6F",s);

fprintf("\n\nParametric Latitude of P1%);
[D,M,S] = DMS(psil*d2r);
if D==0 && psil<0

fprintf("\npsiPl = -0 %2d %9.6Ff (D M S)",M,S);
else
fprintf("\npsiPl
end;

%3d %2d %9.6F (D M S)*,D,M,S);

fprintf(*\n\nParametric Latitude of vertex P0");
[D,M,S] = DMS(psiO*d2r);
if D==0 && psi0<0

fprintf("\npsiPO = -0 %2d %9.6F (D M S)*,M,S);
else
fprintf("\npsiPO = %3d %2d %9.6F (D M S)*,D,M,S);
end;

fprintf("\n\nGeodesic constant u2 (u-squared)”);
fprintf("\nu2 = %20.12e",u2);

fprintf(*\n\nangular distance on auxiliary sphere from equator to P1""");
fprintf("\nsigmal = %20.12e radians”®,sigmal);

fprintf("\n\nVincenty""s constants A and B");
fprintf("\nA = %20.12e",A);
fprintf("\nB = %20.12e",B);

fprintf("\n\nangular distance sigma on auxiliary sphere from P1"" to P2""");
fprintf("\nsigma = %20.12e radians®,sigma);
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fprintf("\niterations = %2d",iter);

fprintf("\n\nLatitude of P2%);
[D,M,S] = DMS(l1at2);
if D==0 && lat2<0
fprintf("\nlatP2
else
fprintf("\nlatP2
end;

-0 %2d %9.6F (D M S)*.M,S);

%3d %2d %9.6F (D M S)",D,M,S);

fprintf(*\n\nVincenty""s constant C");
fprintf("\nC = %20.12e",C);

fprintf("\n\nLongitude difference P1-P2%);
[D,M,S] = DMS(dlon);
if D==0 && dlon<0
fprintf("\ndlon
else
fprintf(*\ndlon
end;

-0 %2d %9.6F (D M S)",M,S);

%3d %2d %9.6F (D M S)",D,M,S);

fprintf("\n\nLongitude of P2%);
[D,M,S] = DMS(lon2);
if D==0 && lon2<0
fprintf("\nlon2
else
fprintf("\nlon2
end;

-0 %2d %9.6F (D M S)*,M,S);

%3d %2d %9.6F (D M S)",D,M,S);

fprintf(*\n\nReverse azimuth®);
[D,M,S] = DMS(az21);
fprintf(*\nalpha2l = %3d %2d %9.6F (D M S)*,D,M,S);

fprintf("\n\n");

MATLAB function Vincenty Inverse.m

function Vincenty_lInverse

% Vincenty_lnverse computes the "inverse case'" on the ellipsoid using
% Vinventy"s method.

% Given the size and shape of the ellipsoid and the latitudes and

% longitudes of P1 and P2 this function computes the geodesic distance
% P1 to P2 and the forward and reverse azimuths

% Function: Vincenty_ Inverse
% Useage: Vincenty_Inverse;

% Author:

% Rod Deakin,

% Department of Mathematical and Geospatial Sciences,
% RMIT University,

% GPO Box 2476V, MELBOURNE VIC 3001

% AUSTRALIA

% email: rod.deakin@rmit.edu.au

% Date:
% Version 1.0 7 March 2008

% Functions Required:
% [D,M,S] = DMS(DecDbeg)

% Remarks:

% This function computes the INVERSE CASE on the ellipsoid. Given the size
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% and shape of an ellipsoid (defined by parameters a and f, semi-major

% axis and flattening respectively) and the latitudes and longitudes of P1
% this function computes the forward azimuth (azl2) P1 to P2, the reverse
% azimuth (az21) P2 to P1 and the geodesic distance (s) P1 to P2.

% References:
% [1] Deakin, R.E, and Hunter, M_N., 2007. "Geodesics on an Ellipsoid -

% Bessels® Method®, School of Mathematical and Geospatial Sciences,
% RMIT University, January 2007.

% [2] Vincenty, T., 1975. "Direct and Inverse solutions of geodesics on
% the ellipsoid with application of nested equations®, Survey
% Review, Vol. 23, No. 176, pp-88-93, April 1975.

%

% Variables:

% A - Vincenty"s constant for computation of sigma

% a - semi-major axis of ellipsoid

% alphal - azimuth at P1 for the line P1-P2 (radians)

% alpha2 - azimuth at P2 for the line P1-P2 extended (radians)
% azl2 - azimuth P1-P2 (degrees)

% az2l - azimuth P2-P1 (degrees)

% B - Vincenty"s constant for computation of sigma

% b - semi-minor axis of ellipsoid

% C - Vincenty"s constant for computation of longitude

% difference

% cdo - cos(domega)

% cos_sigma - cos(sigma)

% delta_sigma - small change in sigma

% dlambda - longitude difference P1 to P2 (radians)

% domega - longitude difference P1" to P2" (radians)

% d2r - degree to radian conversion factor

% e2 - eccentricity of ellipsoid squared

% ep2 - 2nd eccentricity squared

% F - Flattening of ellipsoid

% Flat - denominator of flattening, ¥ = 1/flat

% lambdal - longitude of P1 (radians)

% lambda2 - longitude of P2 (radians)

% latl - latitude of P1 (degrees)

% lat2 - latitude of P2 (degrees)

% lonl - longitude of P1 (degrees)

% lon2 - longitude of P2 (degrees)

% phil - latitude of P1 (radians)

% phi2 - latitude of P2 (radians)

% pion2 - pi/2

% psi0 - parametric latitude of PO (radians)

% psil - parametric latitude of P1 (radians)

% psi2 - parametric latitude of P2 (radians)

% s - geodesic distance Pl to P2

% sdo - sin(domega)

% sigma - angular distance (radians) on auxiliary sphere from P1-
% to P2-

% sin_alphaE - sine of azimuth of geodesic P1-P2 at equator

% sin_sigma - sin(sigma)

% twopi - 2*pi

% u2 - geodesic constant u-squared

% Define some constants

d2r = 180/pi;

twopi = 2*pi;

pion2 = pi/2;

% Set defining ellipsoid parameters

a = 6378137; % GRS80

flat = 298.257222101;

% a = 6377397.155; % Bessel (see Ref [2], p-91)
% flat = 299.1528128;
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% Compute derived ellipsoid constants

f = 1/flat;

b = a*(1-f);
e2 = f~(2-1);
ep2 = e2/(1-e2);

% lat and lon of P1 (radians)
phil = latl/d2r;
lambdal = lonl/d2r;

% lat and lon of P2 (radians)
phi2 lat2/d2r;
lambda2 lon2/d2r;

% [1] Compute parametric latitudes psil and psi2 of P1 and P2

psil = atan((1-f)*tan(phil));
psi2 = atan((1-f)*tan(phi2));
sl = sin(psil);
s2 = sin(psi2);
cl = cos(psil);
c2 = cos(psi2);

% [2] Compute longitude difference dlambda on the ellipsoid
dlambda = lambda2-lambdal; % (radians)
dlon = lon2-lonl; % (degrees)

% [3] Compute longitude difference domega on the auxiliary sphere by
% iteration
domega = dlambda;
iter = 1;
while 1
sdo sin(domega);
cdo cos(domega) ;
X = c2*sdo;
y = cl*s2 - sl*c2*cdo;
sin_sigma = sqrt(x*x + y*y);
cos_sigma = sl*s2 + cl*c2*cdo;
sigma = atan2(sin_sigma,cos_sigma);
sin_alphaE = cl*c2*sdo/sin_sigma;
% Compute cl_2m = cos(2*sigma_m)
x = 1-(sin_alphaE*sin_alphaE);
cl_2m = cos_sigma - (2*sl1*s2/x);
% Compute Vincenty"s constant C
C = f/16*x*(4+Ff*(4-3*x));
% Compute domega
c2 2m = cl 2m*cl 2m;
domega_new = dlambda+(1-C)*f*sin_alphaE*(sigma+C*sin_sigma*(cl_2m+C*cos_sigma*(-
1+2*c2_2m)));
if abs(domega-domega_new)<le-12
break;
end;
domega = domega_new;
iter = iter + 1;
end;
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% [4] Compute parametric latitude of vertex
psiO = acos(sin_alphaE);

% [5] Compute geodesic constant u2 (u-squared)
u2 = ep2*(sin(psid)”™2);

% [6] Compute Vincenty"s constants A and B
A = 1 + u2/16384*(4096 + u2*(-768 + u2*(320-175*u2)));
B = u2/1024*(256 + u2*(-128 + u2*(74-47*u2)));

% [7] Compute geodesic distance s

tl = 2*c2_2m-1;
t2 = -3+4*sin_sigma*sin_sigma;
t3 = -3+4*c2_2m;

delta_sigma = B*sin_sigma*(cl_2m+B/4*(cos_sigma*tl-B/6*cl_2m*t2*t3));
s = b*A*(sigma-delta_sigma);

% [8] Compute forward azimuth alphal
y = c2*sdo;
X = cl*s2 - sl*c2*cdo;
alphal = atan2(y,x);
if alphal<0
alphal = alphal+twopi;
end;
azl1l2 = alphal*d2r;

% [9] Compute azimuth alpha2
y = cl*sdo;

X = =-sl1*c2 + cl*s2*cdo;
alpha2 = atan2(y,x);

% [10] Compute reverse azimuth az21
az21 = alpha2*d2r + 180;
if az21 > 360
az21 = az21-360;
end;

% Print computed quantities, latitudes and azimuth

fprintf("\n///////7/77/7777777777777/777777/7777/77/77/7/77777777777777);
fprintf("\n// INVERSE CASE on ellipsoid: Vincenty""s method //%);
fprintf("\n////////7/777777777/777777777777/77/7777/777/7/77/77/777777777);
fprintf("\n\nellipsoid parameters");

fprintf(*\na = %18.9f",a);
fprintf("\nf = 1/%16.12F" ,flat);
fprintf(*\nb = %21.12F",b);
fprintf("\ne2 = %20.12e",e2);
fprintf("\nep2 = %20.12e",ep2);

fprintf("\n\nLatitude & Longitude of P1%);
[D,M,S] = DMS(latl);
if D==0 && latl<0
fprintf("\nlatP1 = -0 %2d %9.6F (D M S)*,M,S);
else
fprintf("\nlatP1
end;
[D,M,S] = DMS(lonl);
if D==0 && lonl<0
fprintf(*\nlonP1 = -0 %2d %9.6Ff (D M S)",M,S);
else
fprintf(*\nlonP1 = %3d %2d %9.6f (D M S)*,D,M,S);
end;
fprintf("\n\nLatitude & Longitude of P27);
[D,M,S] = DMS(lat2);
if D==0 && lat2<0

1l
=
w
o

%2d %9.6F (D M S)",D,M,S);
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fprintf("\nlatP2 = -0 %2d
else
fprintf("\nlatP2 = %3d %2d
end;
[D,M,S] = DMS(lon2);
if D==0 && lon2<0
fprintf("\nlonP2 = -0 %2d
else

fprintf("\nlonP2 = %3d %2d
end;

%9 .

%9 .

%9 .

%9 .

fprintf("\n\nParametric Latitudes

[D,M,S] = DMS(psil*d2r);
if D==0 && psil<0
fprintf("\npsiPl = -0 %2d
else
fprintf("\npsiPl = %3d %2d
end;
[D,M,S] = DMS(psi2*d2r);
if D==0 && psi2<0
fprintf("\npsiP2 = -0 %2d
else
fprintf("\npsiP2 = %3d %2d
end;

%9 .

%9 .

%9 .

%9 .

fprintf("\n\nLongitude difference

[D,M,S] = DMS(dlon);
if D==0 && dlon<0
fprintf("\ndlon
else
fprintf("\ndlon
end;

fprintf("\n\nLongitude difference on auxiliary sphere P1""-pP2""");

6T

6T

6T

6f

of

6f

6T

6T

6T

on

(D M S$)",M,S);

(> M S)",D,M,S);

(D M S)",M,S);

(D M S)",D,M,S);

P1 and P2%);

(O M S)",M,S);

(D M S)",D,M,S);

(D M S)".,M,S);

(O M S)",D,M,S);

ellipsoid P1-P2%);

-0 %2d %9.6F (D M S)*,M,S);

%3d %2d %9.6F (D M S)",D,M,S);

fprintf("\ndomega = %20.12e radians®,sigma);
fprintf("\niterations = %2d",iter);

fprintf("\n\nParametric Latitude of vertex P0");

[D.M,S] = DMS(psiO*d2r);
if D==0 && psi0<0

fprintf("\npsiPO = -0 %2d %9.6F (D M S)*,M,S);

else

end;

fprintf("\npsiP0 = %3d %2d %9.6Ff (D M S)*,D,M,S);

fprintf("\n\nGeodesic constant u2 (u-squared)");

fprintf("\nu2 = %20.12e",u2);

fprintf("\n\nVincenty""s constants A and B");

fprintf("\nA
fprintf("\nB

%20.12e" ,A);
%20.12e",B);

fprintf("\n\nAzimuth & Distance P1-P2%);

[D,M,S] = DMS(azl2);

fprintf("\naz1l2 = %4d %2d %9.6Ff (D M S)*,D,M,S);

fprintf("\ns = %17.6F",s);

fprintf("\n\nReverse azimuth");
[D,M,S] = DMS(az21);

fprintf(*\nalpha2l = %3d %2d %9.6F (D M S)*,D,M,S);

fprintf("\n\n");
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MATLAB function DMS.m

function [D,M,S] = DMS(DecDeg)

% [D,M,S] = DMS(DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds

al = abs(DecDeg);
Ffix(val);
fix((val-D)*60);
(val-D-M/60)*3600;

n=x0<L

if abs(S-60) < 5.0e-10
M M+ 1;
0.0;

S
end
if M=
D
M
end
if D >=360
D =D - 360;
end

0
1;

[eRwNe)}

+
.0;

i f(DecDeg<=0)

D = -D;
end
return
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ABSTRACT

The direct and inverse problems of the geodesic on an ellipsoid are fundamental
geodetic operations. This paper presents a detailed derivation of a set of recurrence
relationships that can be used to obtain solutions to the direct and inverse problems with
sub-millimetre accuracies for any length of line anywhere on an ellipsoid. These
recurrence relationships were first described by Pittman (1986), but since then, little or
nothing about them has appeared in the geodetic literature. This is unusual for such an
elegant technique and it is hoped that this paper can redress this situation. Pittman's
method has much to recommend it.
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INTRODUCTION

Twenty-one years ago (March 1986), Michael E. Pittman, an assistant professor
of mathematical physics with the Department of Physics, University of New Orleans,
Louisiana USA, published a paper titled 'Precision Direct and Inverse Solutions of the
Geodesic' in Surveying and Mapping (the journal of the American Congress on
Surveying & Mapping, now called Surveying and Land Information Systems). It was
probably an unusual event — a physicist writing a technical article on geodetic
computation — but even more unusual was Pittman's method; or as he put it in his paper,
"The following method is rather different.” And it certainly is.

Usual approaches could be roughly divided into two groups: (i) numerical
integration schemes and (ii) series expansion of elliptic integrals. The first group could
be further divided into integration schemes based on simple differential relationships of
the ellipsoid (e.g., Kivioja 1971, Jank & Kivioja 1980, Thomas & Featherstone 2005),
or numerical integration of elliptic integrals that are usually functions of elements of the
ellipsoid and an auxiliary sphere (e.g., Saito 1970, 1979 and Sj6berg 2006). The second
group includes the original method of F. W. Bessel (1826) that used an auxiliary sphere
and various modifications to his method (e.g., Rainsford 1955, Vincenty 1975, 1976 and
Bowring 1983, 1984).



Pittman developed simple recurrence relationships for the evaluation of elliptic
integrals that yield distance and longitude difference between a point on a geodesic and
the geodesic vertex. These equations can then be used to solve the direct and inverse
problems. Pittman's technique is not limited by distance, does not involve any auxiliary
surfaces, does not use arbitrarily truncated series and its accuracy is limited only by
capacity of the computer used.

Pittman's paper was eight pages long and five of those contained a FORTRAN
computer program. In the remaining three pages he presented a very concise
development of two recurrence relationships and how they can be used to solve the
direct and inverse problems of the geodesic on an ellipsoid (more about this later). His
paper, a masterpiece of brevity, contained a single reference and an acknowledgement
to Clifford J. Mugnier — then a lecturer in the Department of Civil Engineering,
University of New Orleans — for numerous discussions. Unlike other published
methods which have been discussed and developed in detail over the years, Pittman's
method seems to have received no further treatment to our knowledge in the academic
literature, excepting brief mentions in bibliographies and reference lists. Our purpose,
in this paper, is to explain Pittman's elegant method as well as provide some useful
information about the properties of the geodesic on an ellipsoid.

The Direct and Inverse problems of the geodesic on an ellipsoid

In geodesy, the geodesic is a unique curve on the surface of an ellipsoid defining
the shortest distance between two points. A geodesic will cut meridians of an ellipsoid

at angles «, known as azimuths and measured clockwise from north 0° to 360°. Figure
1 shows a geodesic curve C between two points A (¢,,4,) and B (¢4,,4;) on an
ellipsoid. ¢, 4 are geodetic latitude and longitude respectively and an ellipsoid is taken
to mean a surface of revolution created by rotating an ellipse about its minor axis, NS.

Fig. 1: Geodesic curve on an ellipsoid



The geodesic curve C of length s from A to B has a forward azimuth a,,
measured at A and a reverse azimuth a,, measured at B and «,; # .. The direct
problem on an ellipsoid is: given latitude and longitude of A and azimuth «,; and
geodesic distance s, compute the latitude and longitude of B and the reverse azimuth
ag, . The inverse problem is: given the latitudes and longitudes of A and B, compute
the forward and reverse azimuths «,; , a;, and the geodesic distance s.

The geodesic is one of several curves of interest in geodesy. Other curves are: (i)
normal section curves that are plane curves containing the normal at one of the terminal
points; in Figure 1 there would be two normal section curves joining A and B and both
would be of different lengths and also, both longer than the geodesic; (ii) curve of
alignment that is the locus of all points B, where the normal section plane through P,

contains the terminal points of the line; and (iii) great elliptic arcs that are plane curves
containing the terminal points of the line and the centre of the ellipsoid. Normal section
curves, curves of alignment and great elliptic arcs are all longer than the geodesic and
Bowring (1972) gives equations for the differences in length between these curves and
the geodesic.

Some ellipsoid relationships
The size and shape of an ellipsoid is defined by one of three pairs of parameters:
(i) a,b where a and b are the semi-major and semi-minor axes lengths of an ellipsoid
respectively, or (ii) a, f where f is the flattening of an ellipsoid, or (iii) a,e* where ¢
is the square of the first eccentricity of an ellipsoid. The ellipsoid parameters a,b, f,e
are related by the following equations
a-b b a’—b? b?
f=—=1-—; b=a(l-f); &= =1-—=f(2-f 1
—=1-2; b=a(1-f) el ef2-f) @
The second eccentricity €' of an ellipsoid is also of use and

(e,)z:az—bz_ e  f(2-1)

b 1 (1-fY @

In Figure 1, the normals to the surface at A and B intersect the rotational axis of

the ellipsoid (NS line) at H, and H, making angles ¢,,#, with the equatorial plane of
the ellipsoid. These are the latitudes of A and B respectively. The longitudes A,, 4, are
the angles between the Greenwich meridian plane and the meridian planes ONAH , and
ONBH, containing the normals through A and B. ¢ and A are curvilinear coordinates
and meridians of longitude (curves of constant A1) and parallels of latitude (curves of
constant ¢) are parametric curves on the ellipsoidal surface. Planes containing the

normal to the ellipsoid intersect the surface creating elliptical sections known as normal
sections. Amongst the infinite number of possible normal sections at a point, each
having a certain radius of curvature, two are of interest: (i) the meridian section,
containing the axis of revolution of the ellipsoid and having the least radius of
curvature, denoted by p (rho), and (ii) the prime vertical section, perpendicular to the

meridian plane and having the greatest radius of curvature, denoted by v (nu).




M and v= a

; — ©)
(1-€’sin® ¢)° (1-€’sin® g)°

p:

In the development that follows, use
will be made of relationships that can be
obtained from the differential rectangle on
the ellipsoid shown in Figure 2. Here P
and Q are two points on the surface
connected by a curve of length ds with
azimuth « at P. The meridians A4 and
A+dA, and parallels ¢ and ¢+d¢ form

a differential rectangle on the surface of A+d

the ellipsoid. _ _ _ o
From Figure 2 the following Fig. 2: Differential rectangle on ellipsoid

relationships can be obtained

dssina=vcos¢g dA and dscosa = p d¢ 4)

Mathematical definition of a geodesic

A curve drawn on a surface so that its osculating plane at any point on the surface
contains the normal to the surface is a geodesic (Lauf 1983). This definition, including
a definition of the osculating plane, can be explained briefly by the following.

A point P on a curve (on a surface) has a position vector

r(t)=x(t)i+y(t)j+z(t)k where ijk are unit vectors in the directions of the x,y,z

Cartesian coordinate axes and t is some scalar parameter. As t varies then the vector r
sweeps out the curve C on the surface, hence the distance s along the curve is a function

of t, given via % :%r(t). Differentiating the vector r with respect to s gives a unit

tangent vector t and differentiating t with respect to s gives the curvature vector xn,
perpendicular to t. n is the principal normal vector, « (kappa) is the curvature and

o =— Iis the radius of curvature and also the radius of the osculating (kissing) circle
K

touching P.

The osculating plane at P contains both t and n (and the osculating circle), and
when this plane also contains the normal to the surface then the curvature x is least and
o is a maximum; this is Meunier's theorem (Lauf 1983), a fundamental theorem of
surfaces. Therefore, if P and Q are very close and both lie on the surface and in the
osculating plane, then the distance ds between them is the shortest possible distance on
the suface.



The characteristic equation of a geodesic

The mathematical definition of a geodesic does little to help us develop solutions
to the problem of computing distances of geodesics on an ellipsoid. It does lead to the
characteristic equation of a geodesic, and this equation is the basis of all solutions to
computing geodesic distances. This equation

v COS ¢ Sin ¢ = constant (5)

is known as Clairaut's equation in honour of the French mathematical physicist Alexis-
Claude Clairaut (1713-1765). In a paper in 1733 titled Determination géométric de la
perpendicular a la méridienne tracée par M. Cassini, ... Clairaut made an elegant study
of the geodesics of surfaces of revolution and stated his theorem embodied in the
equation above (Struik 1933). His paper also included the property already pointed out
by Johann Bernoulli (1667-1748): the osculating plane of the geodesic is normal to the
surface (DSB 1971)

The characteristic equation of a geodesic shows that the geodesic on the ellipsoid
has the intrinsic property that at any point, the product of the radius r =vcos¢ of the

parallel of latitude and the sine of the azimuth, sin« , of the geodesic at that point is a
constant. This means that as r decreases in higher latitudes, in both the northern and
southern hemispheres, sina changes until it reaches a maximum or minimum of +1.
Such a point is known as a vertex and the latitude ¢ will take maximum value ¢, .

(I) max
S
=]
¢
; <— AN —>|
A B equator

hy ) node node / A

PO vertex

¢ min

vertex

Fig. 3: Schematic diagram of the oscillation of a geodesic on an ellipsoid

Thus the geodesic oscillates over the surface of the ellipsoid between two
parallels of latitude having a maximum in the Northern and Southern Hemispheres and
crossing the equator at nodes. As we will demonstrate later, due to the eccentricity of
the ellipsoid, the geodesic will not repeat after a complete revolution.

Figure 3 shows a schematic diagram of the oscillation of a geodesic on an
ellipsoid. P is a point on a geodesic that crosses the equator at A, heading in a north-
easterly direction reaching a maximum northerly latitude ¢, at the vertex P, (north),

then descends in a south-easterly direction crossing the equator at B, reaching a
maximum southerly latitude ¢, at P, (south), then ascends in a north-easterly
direction crossing the equator again at A'. This is one complete revolution of the
geodesic, but 4, does not equal A, due to the eccentricity of the ellipsoid. Hence we

say that the geodesic curve does not repeat after a complete revolution.



EQUATIONS FOR COMPUTATION ALONG GEODESICS

Using Clairaut's equation and simple differential relationships, expressions for
distances s and longitude differences A4 (see Figure 3) between P on a geodesic and
the vertex P, can be obtained. These expressions are in the form of elliptic integrals,

which by their nature do not have exact (or closed) solutions.

Expanding the integrands into infinite series, integrating term-by-term and then
truncating to a finite number of terms is the usual technique to obtain working solutions
for s and AZ (e.g., Thomas 1970). In this section, we show how this method can be
simplified by using recurrence relationships to generate solutions to the integrals in the
series. Our relationships are slightly different from Pittman (1986) and our notation is a
little different but in all other respects, we have followed his elegant approach.

Relationships between parametric latitude y and geodetic latitude @
Development of formulae is simplified if parametric latitude y is used rather
than geodetic latitude ¢. The connections between the two latitudes can be obtained

from the following relationships.

Figure 4 shows a portion of a meridian
NPE of an ellipsoid having semi-major axis
OE =a and semi-minor axis ON =b. P is a N' |
point on the ellipsoid and Q is a point on an N
auxiliary circle centred on O of radius a. P and
Q have the same perpendicular distance from the
axis of revolution ON. The normal to the b
ellipsoid at P cuts the major axis at an angle ¢

(the geodetic latitude) and intersects the
rotational axis at H and the distance PH =v.

auxiliary circle
Van y

The angle QOE =y is the parametric latitude. O ‘
The Cartesian equation of the ellipse is / a
W2 72 H ¢
—2+b—2=1 and the Cartesian equation of the
a
auxiliary circle is w?+z2=a?. We may re- Fig. 4: Meridian section of ellipsoid

arrange both equations so that w” is on the left-hand side of the equals sign giving
2

a : . . .
W =a’ —b—222 (ellipse) and w® =a*—z* (circle). Now, since the w-coordinates of P

2
and Q are the same then a’ —% z; =a’ —z5 which leads to z, :gzQ :
Using this relationship

w=0M =acosy and z=MP=bsiny (6)
. . . . . dw . dz
and differentiating equations (6) with respect to y gives 4o —asiny, P bcosy
v

and the chain rule gives dz =——=——coty
dw dy dw a



Now by definition, 3—2 is the gradient of the tangent and from Figure 4 we may write
w

;1_2 =—tan (90" - ¢) =—cot¢. Equating the two expressions for dz/dw gives a
w

relationship between y and ¢ as
tana//zgtan¢=(1— f )tan ¢ (7)
a

From equation (6) and Figure 4, w=acosy =vcos¢ and using equation (3) gives
COoS ¢
(1-€sin ¢)]/2

Alternatively, using the trigonometric identity sin® A+cos® A=1, equation (8) can be
written as

cosy =

(8)

. sin
sing = . ‘//2 7 )
(1-€cos’ )
The latitudes ®, and g, of the geodesic vertex
Denoting the latitude of the vertex as ¢, (a maximum), Clairaut's equation (5) gives
v, COS ¢, = constant = v cosgsin « (10)

Denoting the parametric latitude of the vertex as y, and using acosy =vcos¢g from
before, equation (10) becomes acosy, =acosy sina and v, is defined as

COSy, =Cosy Sina (11)

Squaring both sides of equation (11) and using again the identity sin®> A+cos* A=1 we
can obtain the azimuth « of a geodesic as

2 2
COS” y —CO0S
cosa = \/ d Yo
cosy
From equation (11) we see that if the azimuth « of a geodesic is known at P having
parametric latitude y , the parametric latitude v, of the vertex P, can be computed.

(12)

Conversely, given y and y, of points P and P, the azimuth of the geodesic between

them may be computed from equation (12).

In the following sections, two differential equations; one for ;—S and the other for j—;t
4 4

will be developed that will enable solutions for the geodesic distance s and the

longitude difference A4 between P and the vertex F.



Differential equations for distance c?_s and longitude difference j—/l
Y Y

From equation (9) we may write sin’y =(1-e’cos’y )sin’¢ and differentiating
implicitly and re-arranging gives
dg (1-e€’sin®g)siny cosy
dy  (1-e?cos’y)singcos ¢

(13)
Using the chain rule and equation (4) gives an expression for the derivative ;—S as
v

ds dsdg p (1-€°sin’g)sinycosy
dy  dgdy cosa (1-e’cos’y)singcosg

(14)

2
Using equations (7), (8), (9) and the fact that 1—e” = b—2 , We may write
a

g (1-€? cos® 1//)]/2
— —acosy

(15)
v (cos® y —cos’ y, )]/2

Similarly, the chain rule and equations (4) and (15) gives

12
di dids sina (1-ecos’y)
—=——=———acosy 7
dy ds dy vcosg (coszz//—cosz%)

Using equation (10) and the relationship acosy =vcos¢, we may write

(16)

2

Y2
di  cosy, (1-€®cos’y)
dy  cosy (cosz://—cos2 wo)l/z

Equations (15) and (17) are the basic differential equations that will yield solutions for
distance s and longitude difference A4 along the geodesic curve between P and the
vertex F,.

A7)

Formula for computing geodesic distance s between P and the vertex Py
Equation (15) can be simplified by letting u=siny and u,=siny,, so that

du
qo = cosw and cos’ y —cos® y, =u’ —u?, hence
7%

s du (1-etcosy)”
dv oy (2 w)

(18)



2 ne2,, V2
: . ds ds /du a(l—e cos V/)
The chain rule gives —=—/ —= 7
du dy/ dy (ug_uz)

and equations (1) and (2) we are able to obtain, after some manipulation

but using cos®y =1-sin’y

ds b(1+ guz)]/2

= 19
du (ug_uz)W (19)
where ¢ = (e’)z. The geodesic distance s between P and the vertex P, is given by
2
Pto (14 gp?
s=b j &dp (20)

12
p=u (Ug — pz)

where siny < p<siny,. Equation (20) can be simplified by use of the binomial series

and the numerator of the integrand is given by

(1+ep?)” ZB%( ) (21)

1 . . - . . .
where B? are binomial coefficients computed from the recurrence relationship

3-2n

B? = - B2,, n>1and B =1 (22)
n
Equation (20) can now be written as
s_bj MZB@“ p”" dp = szz,sj P o= bzg"sz (23)
()
where =J' , for n>0 (24)
u U -

The solution of the integral | is fundamental to the computation of the distance s
along the geodesic between P and P, and the usual technique is to find solutions for
each integral 1, and expand equation (23) into a finite series; e.g. Thomas (1970, pp.
33-34). Pittman's (1986) approach, outlined below, was to developed the integral I, as
a recurrence equation having the general form 1, =a, , +b, .l , where the coefficients
a,, and b, _, are functions of n, y and w, and an initial value of I, is a function of

w and w, only.

2n

T . 1 d
Now {u— Jp21 Z—p)m dp=-— !IOZldp(z—pz)wdp

and using integration by parts (e.g., Ayres 1972) the integral 1, becomes



p=u
- y Uo 2n-2
=u"*(ug -u?) i +(2n—1)j(u§ = pz)—zp 7 P
u o~ P )
—urt(uz-u?)  (2n-) [l -1, ] (25)
and
nl, =u®*(ug —uz)J/2 +(2n-1)ull,, forn=1,23,... (26)
Let U :ui so that u=Uu,, u; —u® =u; (1-U?) giving
0
2n1, =(Uu, "y (1-U?) " +(2n-1)ull,,  for n=1,23,... 27)
)12
Let J, :2n_2:n sothat J, , :wlﬁ and the recurrence formula for I, becomes
uO uO

a simpler recurrence formula for J

J =UriJ1-u? + 2n-1 J., forn=23... (28)
2(n-1)
with initial condition
Jl:%:uxll—uzﬂo (29)
0
I, has a simple result derived from equation (24) as follows:
Uy ) 2
IO:(l/uo)J-(l—[p/uo] ) dp (30)
and with the transformation p =u, cos@, dp/d6=-u,sin@ and 1-[ p/uo]2 =1-cos’ 0
‘ u
l, = j (-1)d@ =arccos [—J = arccosU (31)
uO

u
O=arccos| —
Uo

Using these results, the distance s along the geodesic between P and the vertex P, is
s :b{lo +izig“u§“B§Jn}
243n

=bl, +%gu§Ble+%gzu§B§Jz +%g3u§BjJ3+--~

=D, +D,+D,+D,+:- (32)

10



Formula for computing difference in longitude AA between P and P,
Using the binomial series we may write equation (17) as

a1 _ cosz//OZ(—l)” eZ”Bf s v 7 (33)
dy 0 (cos® y —cos? v, )
and the difference in longitude between P and the vertex P, is
ve d/l = n_o 1
Ad= | =Zdo=cosy,y (-1)"e"BiL, (34)
0=y de n=0
where the integral L, is
Yo 2n
L = cos” 0 +d6, n=0 (35)
o~ C0s 0(cos® - cos” y, )
Again, let u=siny, u, =siny, and put p=sind. Then d&/dp =secd,
cos® @ =1- p?, and with
2n cos? 0)' 1-p?)’ .
COoS ngz( - ) COSHd@Z(—pZ)dDZ(l—pZ) 1dp
cosé cos® @ 1-p
and
i . y
(cos2 0 —cos® 1//0)]/2 = (1—sm2 0—(1—S|n2 1//0)) g (u§ — pz)]/2
giving
u (1 p2 n-1
Ln_j( ) dp, n>1 (36)

Using the binomial series, the numerator of the integrand can be expanded into a
n-1

polynomial (1- pz)M:Z(—l)m Br'p®™, where the binomial coefficients B! are
m=0

given by
Brt=" B form=234,.. (37)

with an initial value B =n-1 and noting that B] ™ =1.
Using these results, equation (36) becomes

n-1 Ug 2m n-1
Y

L =2 (-1)" By [ ——dp =2 (-1 By, (38)
m=0 u (uo -p ) m=0
Ug p2m
where I, = J.—wdp, for m>0 (39)
f (u§ -p°

11



and equation (39) is the same as equation (24) except for a change of index variable.
Using this similarity and the expressions above, the longitude difference given by
equation (34) can be expressed as

o0 n-1
AL =cosy, {LO +3(-1)"e*B: > (-1)" B;‘llm} (40)
n=1 m=0

Equation (40) can expanded as
AL =cosy, {LO {—ezBf +> (1)’ eZ”Bnﬂ I
n=2

+Z )" e’"B Z 1)““an;l|m}

m=1

(41)

and then simplified by use of the blnomlal series, where

(1—e2)”2=i( ! Z“BZ—1+Z ) e"B} =1- eBz+z )'e"B:  (42)

n=0
The terms in [] of equation (41) are the last two terms on the right-hand side of
equation (42) and using this equivalence gives

A/”t:cosx//o{Lo+(4/1_ 2_1 ) i neann;”Z: 1)m Br:_1|m}

n=2 m=1
0 . 1
:cosx//o{L(J +(\/1— 2 ) +1>(-1)"e’"B? - Z”‘Brﬂ‘l.]m} (43)
n=2 m=1

where |, is obtained from equation (31) and J,, are given by equation (28), noting that

as before J,, :2_m|
u

2m m’*’
0

A simple expression for L, is obtained from equation (35) as follows

Yo 1 Yo
L, = do=
o~ €05 0(cos” @ —cos’ v, ) o~ (Sin® y, —tan’ O cos’ v, )

sec’ 0

do (44

172

Putting x = coty, tan @ then d@/dx = tany, cos’ & and

sin’y, —tan® @cos’ y, =sin z//o[l tan’ 192?: ;//IOJ
0

=sin’y, (1-tan” fcot’ y, )

=sin’y, (1-x*)
so that

Ctany, ¢ dx

Siny, o any V1- X2

tany,

(45)
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, then using the second result gives

. dx arcsin x
since j

J1—x2 | Z—arccosx

1

dx tany
L, =secy, =Secy, arccos[ j (46)
0 JW N ’ tan

tany,

Equation (40) can be simplified further to give the longitude difference A4 between P
and the vertex P, as

Ad=cosyy{M;+M,;+M, + M, +-- (47)
L, forn=0

where M, = (\/1—7—1) I, forn=1 (48)
1B:(-1)"e*K, forn>2

and K, = :1_11(—:1)’“ WB™)  forn=2,34,... (49)

A GEODESIC ON AN ELLIPSOID DOES NOT REPEAT AFTER A SINGLE
REVOLUTION

Earlier, it was mentioned that due to the eccentricity of the ellipsoid, the geodesic will
not repeat after a complete revolution. Here is a demonstration of that fact.
When P is at the node A of Figure 3 then A4 = A/, and using equation (17) we have

Vg 1-e?cos? )"
4(A%,)=4cosy, ( )

do (50)
40 C0s 0 cos’ 6 —cos’ y, )]/2

Since this integral is difficult to evaluate, we instead determine upper and lower bounds
for the quantity 4(A4,) by using the bounds of the integration variable 6. This allows

certain terms within the integral to be disposed of and a simplified integral evaluated.

For 0 <68 <y,, the bounds on the numerator of the integrand are

(1—e2)]/2 <(1-€’cos® 9)]/2 <(1-€cos’ y, )]/2 so that on the one hand

% (1-€”cos’y, )]/2

4(A%,) < 4cosy, dé

420 €05 0( cos® 0 —cos” y, )]/2
=4cosy, (1-e” cos’ y, )]/2 Lol, -,
= 4cosy, (1-e” cos’ )]/2 Lrsecy,

=27 (1-¢€” cos’ )]/2 (51)
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while on the other hand
v (1_ o2 )1/2

]
620 C0s 0(c0s” - cos” )

4(AZ,)=4cosy, ~do
= 2rz(1-¢?)" (52)

Combining these inequalities gives the bounds for the quantity 4(A/14) as

2r(1-€?)" <a(ad,) <2z (1-¢*cos?y, ) (53)
Therefore, after a single revolution, 4(A4,) <27z when 0" <y, <90°. Note that when

w, =0 the geodesic is an arc of the equator (a circle) and when y, =90° the geodesic
is an arc of the meridian (an ellipse).

NUMERICAL RESULTS FOR DISTANCE AND LONGITUDE EQUATIONS
Equations (32) and (47) for computing distance s and longitude difference A4 between
P and the vertex P, are relatively simple summations of terms. To test the number of
terms required for accurate answers, a geodesic was chosen with an azimuth
a=4312'36" at P having latitude ¢=9"3524" on the ellipsoid of the Geodetic
Reference System 1980 (GRS80) (Moritz 1980), defined by a=6378137 metres and
f =1/298.257222101.

Numerical constants for GRS80 ellipsoid and geodesic
b =a(l-f) =6356752.314140356 metres

y =arctan[ (1- f)tang | =0.166826262923 radians
w, =arccos[cosy sina| =0.829602797993 radians

u =siny —0.166053515348; u, =siny, =0.737663250899
U =L -3 _225107479796; I, =arccosU =1.343742980976 radians
u, siny,
V = tt:: L4 =0.154125311675; L, =secy,arccosV =2.097333540996 radians
Vo
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Table 1: Ellipsoid and geodesic constants and binomial coefficients for
equations (32) and (47)

2n

4.033507790574e-018

4.256177768135e-018

0.007686530791

n e2n " Uo Bn%

1 | 6.694380022901e-003 | 6.739496775479e-003 0.544147071727 0.500000000000
2 | 4.481472389101e-005 | 4.542081678669e-005 0.296096035669 | -0.125000000000
3 | 3.000067923478e-007 | 3.061134482735e-007 0.161119790759 0.062500000000
4 | 2.008359477428e-009 | 2.063050597570e-009 0.087672862339 | -0.039062500000
5 1.344472156450e-011 | 1.390392284997e-011 0.047706931312 0.027343750000
6 | 9.000407545482e-014 | 9.370544321391e-014 0.025959586974 | -0.020507812500
7 | 6.025214847044e-016 | 6.315275323850e-016 0.014125833235 0.016113281250
8

-0.013092041016

Table 2: Recurrence formula values and distance components for equation (32)

J D,
1 | 1.563072838216 8.541841303930e+006 8541841.303930 m
2 | 2.355723441968 9.109578467516e+003 9109.5784675
3 | 2.945217495733 -6.293571169346e+000 -6.2935712
4 | 3.436115617261 9.618619108010e-003 0.0096186
5 | 3.865631515581 -1.929070816523e-005 -0.0000193
6 | 4.252194740421 4.456897529564e-008 0.0000000
7 | 4.606544305836 -1.123696751599e-010 -0.0000000
8 | 4.935583185013 3.006580650377e-013 0.0000000

sum | 8.550944598425e+006

s = 8550944.598425 m

Table 3: Recurrence formula values and longitude components for equation (47)

n J, M,
0 2.097333540996e+000
1 1.563072838216 -4.505315819380e-003
2 2.355723441968 2.382298926901e-006
3 2.945217495733 1.267831357153e-008
4 3.436115617261 6.525291638252e-011
5 3.865631515581 3.431821056093e-013
6 4.252194740421 1.852429353592e-015
7 4.606544305836 1.023576994037e-017
8 4.935583185013 5.769507252421e-020
sum 2.092830620219e+000

AA = cosy, (sum)

~1.413013969112 radians
=80.959736823113 degrees
=80"57'35.052563"

Inspection of these numerical values indicates than an upper limit of N =8 in the
summations is more than sufficient for accuracies of 0.000001 metre in distances and
0.000001 second of arc for longitude differences.
confirmed using Vincenty's equations (Vincenty 1975) that have been programmed in a

Microsoft™ Excel workbook that can be downloaded from the website of Geoscience

Australia at http://www.ga.gov.au/]
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It should be noted here that the distance and longitude equations [equations (32)
and (47)] are not themselves, solutions to the direct or inverse problems. Instead, they
are the basic tools, which if used in certain ways, enable the solution to those problems.

In a computer program, equations (32) and (47) would be embedded in a function

that returned s and AA given the ellipsoid parameters (a, f), parametric latitudes

(w.w,) and the upper limit of summations (N). A brief explanation of how such a
function might be used is given below.

USING THE DISTANCE AND LONGITUDE EQUATIONS TO COMPUTE THE
DIRECT AND INVERSE PROBLEM

equator

node node/ A

d>nlin ®
vertex

Fig. 5: Schematic diagram of a geodesic between P, and P, on an ellipsoid

Direct solution
The key here is to use the distance equation in an iterative computation of siny,. Once
this is known, then ¢,, 4, and «,, follow. The steps in the computation are:

1.  Test the azimuth to determine whether the geodesic is heading towards or away
from the nearest vertex By, noting that P, will be in the same hemisphere as P,.

2. Compute y, and y,; then use the distance and longitude equations to compute s,
and A/, between B, and P,, aswell as 4, . (see Fig. 5).
3. With u=siny =0, compute s, and A4, between the node and F.
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s—s, if geodesic is heading towards P,

. If s,>0 then P, is
s+s, if geodesic is heading away from P, ? ?

Compute s, ={

after P, and closer to another vertex P, in which case s, is reduced by multiples of
2s, until s, <s, and the number of vertices n determined (vertices are 2s, apart).
If s, <0 then P, is before P,. (Note thatin Fig. 5, s, <0 and P, is before P,)

Compute y, by iteration. An approximate value y, is found from equations (32)

by taking the first term only; hence 3_ I, = arccos( s_m Ld J
b siny,

L S,
and siny, =siny, cos o)

Now a re-arrangement of the differential equation (19) gives du =% :i_gtjj

where u=siny,, ds=s,-s, and s, is computed from the distance equation with
the approximate parametric latitude y,. Equation (19), linking ds and du, is the
basis of the iterative solution for siny, (and hence ¢, ).

After computing w, the longitude difference A4, is computed and depending on
the number of vertices and the direction of the geodesic, A, is determined. The
azimuth o, follows from Clairaut's equation and the reverse azimuth o,, obtained.

Inverse solution
This is the more difficult of the two solutions since y, is unknown and must be
determined by iteration, using approximations for s, ¢, and o, obtained by

approximating the ellipsoid with a sphere and using spherical trigonometry. The steps
in the computation are:

1.

Convert longitudes of P, and P, to east longitudes in the range 0" < A,,4, <360

and determine a longitude difference AA in the range —180° <AA<180°. +AA
corresponding to east/west direction of the geodesic from P,.

Compute parametric latitudes y, and y, then use these and AA as latitudes and

longitude difference on a sphere to compute spherical distance o and spherical
angles g, and £,. These can be used to determine approximations of s and «,, .

Compute y, by iteration. Approximations A4’ and A4, can be obtained from

equation (47) noting that Mozsecwoarccos[tam//

and ignoring terms
tany,

M, M, M,,...

This gives A4/ =arccos tany, and AA, =arccos any, , and
tany, tany,
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f (v,)=AA'— AL ={+arccos 18NY4 1 arcos| BNV + A4, r—AA where the +
tany, tany,

signs are associated with the east/west direction of the geodesic.

v, can be found using Newton's iterative method (Williams 1972)

(‘/’0 )n+l = (‘/’0 )n _% (54)

where f'(y,) is the derivative of f (,). An initial value of y, can be computed

from equation (11).
4. Once y, is known then s, ,A4;s,,A4, and s,,A4, can be computed from the

distance and longitude equations and s obtained. The forward and reverse azimuths
can be found from Clairaut's equation (5).

CONCLUSION

Pittman's (1986) recurrence relationships for evaluating integrals allow beautifully
compact equations for distance s and longitude difference A4 along a geodesic between
P and the vertex P,. These equations can be easily translated into a computer program

function returning s and A4 given a, f, uand u,. Using such a function, algorithms (as

outlined above), can be constructed to solve the direct and inverse problems on the
ellipsoid. Pittman's (1986) paper (which included FORTRAN computer code) has a
concise development of the necessary equations and algorithms. The paper here has a
more detailed development of the recurrence relationships (with a slightly different
formulation) as well as additional information on the definition and properties of a
geodesic.

Interestingly, Pittman's (1986) method is entirely different to other approaches
that fall (roughly) into two groups: (i) numerical integration techniques and (ii) series
expansion of integrals; the latter of these with a history of development extending back
to Bessel's (1826) method. Numerical integration, a technique made practical with the
arrival of computers in the mid to late 20th century, is relatively modern. So too is
Pittman's method.

To our knowledge, this is the first paper (since the original) discussing his elegant
method; a method that has much to recommend it, and one that we hope might become
the object of study in undergraduate surveying courses and discussion in the geodetic
literature.
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ABSTRACT

These notes provide a detailed derivation of the equation for a normal section curve on an
ellipsoid and from this equation a technique for computing the arc length along a normal
section curve is developed. Solutions for the direct and inverse problems of the normal
section on an ellipsoid are given and MATLAB functions are provided showing the

algorithms developed.

INTRODUCTION

In geodesy, the normal section curve is a plane curve created by intersecting a plane
containing the normal to the ellipsoid (a normal section plane) with the surface of the
ellipsoid, and the ellipsoid is a reference surface approximating the true shape of the Earth.
In general, there are two normal section curves between two points on an ellipsoid, a fact
that will be explained below, so the normal section curve is not a unique curve. And the
distance along a normal section curve is not the shortest distance between two points.

The shortest distance is along the geodesic, a unique curve on the surface defining the
shortest distance, but the difference in length between the normal section and a geodesic

can be shown to be negligible in all practical cases.

The azimuth of a normal section plane between two points on an ellipsoid can be easily
determined by coordinate geometry if the latitudes and longitudes of the points are

expressed in a local Cartesian coordinate system — this will be explained in detail below.

The distance along a normal section curve can be determined by numerical integration

once the polar equation of the curve is known. And the derivation of the polar equation of
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a normal section curve is developed in detail by first proving that normal sections of
ellipsoids are in fact ellipses, then deriving Cartesian equations of the ellipsoid and the
normal section in local Cartesian coordinates and finally transforming the local Cartesian
coordinates to polar coordinates. The differential equation for arc length (as a function of
polar coordinates) is derived and a solution using a numerical technique known as

Romberg integration is developed for the arc length along a normal section curve.

The azimuth of the normal section as a function of Cartesian coordinates); the polar
equation of the normal section curve; and the solution of the arc length using Romberg

integration are the core components of solutions of the direct and inverse cases of the

normal sections on an ellipsoid. These are fundamental geodetic operations and can be
likened to the equivalent operations of plane surveying; radiations (computing coordinates
of points given bearings and distances radiating from a point of known coordinates) and
joins; (computing bearings and distances between points having known coordinates). The
solution of the direct and inverse cases of the normal section are set out in detail and

MATLAB functions are provided.

THE ELLIPSOID

Figure 1: The reference ellipsoid

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse (whose
major and minor semi-axes lengths are a and b respectively and a > b) about its minor
axis. The ¢,A curvilinear coordinate system is a set of orthogonal parametric curves on
the surface — parallels of latitude ¢ and meridians of longitude A with their respective

reference planes; the equator and the Greenwich meridian.
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Longitudes are measured 0° to £180° (east positive, west negative) from the Greenwich
meridian and latitudes are measured 0° to £90° (north positive, south negative) from the
equator. The z,y,z geocentric Cartesian coordinate system has an origin at O, the centre
of the ellipsoid, and the z-axis is the minor axis (axis of revolution). The 2Oz plane is the
Greenwich meridian plane (the origin of longitudes) and the xOy plane is the equatorial

plane.

The positive z-axis passes through the intersection of the Greenwich meridian and the
equator, the positive y-axis is advanced 90° east along the equator and the positive z-axis

passes through the north pole of the ellipsoid.
The Cartesian equation of the ellipsoid is

£yt
a2 + b_2 =1 (1)

where a and b are the semi-axes of the ellipsoid (a > b).
The first-eccentricity squared e’ and the flattening f of the ellipsoid are defined by

2 2
2 CL—b

¢ =——=f(2-f)

b2 (1_f>2 _1—62

PROOF THAT NORMAL SECTION CURVES ARE ELLIPSES

Normal section curves are plane curves; i.e., curves on the surface of the ellipsoid created
by intersecting the surface with a plane; and this plane (the normal section plane) contains

the normal to the surface at one of the terminal points.

A meridian of longitude is also a normal section curve and all meridians of longitude on

the ellipsoid are ellipses having semi-axes a and b (a > b) since all meridian planes — e.g.,

Greenwich meridian plane zOz and the meridian plane pOz containing P — contain the z-

axis of the ellipsoid and their curves of intersection are ellipses (planes intersecting surfaces
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. . . . 2 2 92 .
create curves of intersection on the surface). This can be seen if we let p” = 2" + ¢ in

equation (1) which gives the familiar equation of the (meridian) ellipse

2 2
P z
?—f—b—Q:l (a<b) (4)

z

np

N
&
N
a o /¢ p

I

Figure 2: Meridian ellipse

In Figure 2, ¢ is the latitude of P (the angle between the equator and the normal), C'is
the centre of curvature and PC'is the radius of curvature of the meridian ellipse at P. H is

the intersection of the normal at P and the z-axis (axis of revolution).

The only parallel of latitude that is also a normal section is the equator. And in this

unique case, this normal section curve (the equator) is a circle. All parallels of latitude on

the ellipsoid are circles created by intersecting the ellipsoid with planes parallel to (or

coincident with) the Oy equatorial plane. Replacing z with a constant C'in equation (1)
gives the equation for circular parallels of latitude

2

$2+y2:a2[1_§_2:p2 (OSCS[), CL>b) (5)

All other curves on the surface of the ellipsoid created by intersecting the ellipsoid with a

plane are ellipses. And this general statement covers all normal section planes that are not

meridians or the equator. This can be demonstrated by using another set of coordinates

z',y’, 2" that are obtained by a rotation of the z,y,z coordinates such that

/
X

T Ty T N3
I _
y'|=Rly where R =|r, n, n,
P Z T3 T3p T

where R is an orthogonal rotation matrix and R~ = R’ so
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X X

z z T T Ty
_ =11 7 /
=R |y and |y|=|n, n, T [|Y
P Tz Ty Tzl

2 12 2. 12 212

2 11 11 I,
TT=1T Y T2 20052y + 202 + 2 Yz

2 2 12 2 12 2 12 11 11 I,
Y =TT Ty T2 2T XY+ 21,10 4 21T,y 2

2 12 2 /2 2 12

. . 2 ! ! !/ .1
giving 20 =% gy T2 21y 2r1 T2+ 21y 2

2ty = (7”121 + ﬁé)x/2 + (7521 + 7"222)?//2 + (T321 + T322>Z/2 + 2(711751 + 7“127“22>x/y/
+2(711r31 + 7’127’32>$'Z/ +2 (751T31 + 7’227’32)y’z’

Substituting into equation (1) gives the equation of the ellipsoid in z’,7’,2" coordinates

1 )2 () )y () 2 2 (e, )2y

a’ |42 (rllriﬂ + 7”127’32)1’/,2/ + 2(51%1 + 7§2r32)ylzl

1

+b_2{7“123x/2 + 7“223]/2 + 7"3233,2 + 21,3y 4 21y 27“237“333//} =1 (6)

In equation (6) let 2’ = C, where C, is a constant. The result will be the equation of a

curve created by intersecting an inclined plane with the ellipsoid, i.e.,

2 2 2 2 2 2
.+ r ., + 1T 7.7, ., + 7 T
11 12 1 12 11721 12722 13°2 /.7 21 22 2 12
a

a b a b b
+{2C, (rmy + namyy + gy )f 2 4+ {20, (mymyy + mryy + 1357 ) Y
= 1-C/ {n + 1 + 153} (7)

This equation can be expressed as
Az"” +2Hx"y' + By"” + D2’ + By’ =1 (8)

where it can be shown that AB — H* > 0, hence it is the general Cartesian equation of an
ellipse that is offset from the coordinate origin and rotated with respect to the coordinate
axes (Grossman 1981). Equations of a similar form can be obtained for inclined planes

' = C, and y' = C,, hence we may say, in general, inclined planes intersecting the

ellipsoid will create curves of intersection that are ellipses.
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NORMAL SECTION CURVES BETWEEN P, AND P, ON THE ELLIPSOID

3
S
=
=

=
S8
)

rotational axis of ellipsoid

Figure 3: Normal section curves between P, and P, on the ellipsoid

Figure 3 shows P, and P, on the surface of an ellipsoid. The normals at P, and P, (that lie
in the meridian planes ONP H and ONP,H, respectively) cut the rotational axis at H
and H,, making angles ¢ ,¢, with the equatorial plane of the ellipsoid. These are the
latitudes of P and P, respectively.

1 2

The plane containing the ellipsoid normal at P, and also the point P, intersects the

surface of the ellipsoid along the normal section curve PFP,. The reciprocal normal section
curve P P (the intersection of the plane containing the normal at P,, and also the point
P with the ellipsoidal surface) does not in general coincide with the normal section curve

PP, although the distances along the two curves are, for all practical purposes, the same.
Hence there is not a unique normal section curve between P, and P, , unless both P and

P, are on the same meridian or both are on the equator.
The azimuth «, , is the clockwise angle (0° to 360°) measured at P, in the local horizon
plane from north (the direction of the meridian) to the normal section plane containing P, .

The azimuth «,, is the azimuth of the normal section plane P, P, measured at P, .
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LOCAL CARTESIAN COORDINATES

Figure 4 shows a local Cartesian coordinate system E,N,U with an origin at P on the
reference ellipsoid with respect to the geocentric Cartesian system z,y,z whose origin is a

the centre of the ellipsoid

Figure 4: z,y,z geocentric Cartesian and F,N, U local Cartesian coordinates

Geocentric z,y,z Cartesian coordinates are computed from the following equations

T = I COS ) COS A
y = v cos¢sin A (9)
z = V(1—62>singb

where v = PH in Figure 4 is the radius of curvature in the prime vertical plane and

a
V=
J1—e*sin® ¢

The origin of the local E,N, U system lies at the point P (qb A ) The positive U-axis is

07770

(10)

coincident with the normal to the ellipsoid passing through P and in the direction of
increasing radius of curvature v. The N-U plane lies in the meridian plane passing
through P and the positive N-axis points in the direction of North. The FE-U plane is
perpendicular to the N-U plane and the positive E-axis points East. The E-N plane is

often referred to as the local geodetic horizon plane.

Geocentric and local Cartesian coordinates are related by the matrix equation

U T — 1,
E :Rm Y=Y, (11)
N z— 2z,
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where z, 7,2, are the geocentric Cartesian coordinates of the origin of the E,N, U system

and R, is a rotation matrix derived from the product of two separate rotation matrices.

cosg, 0 sing,|| cos), sin), O
R, =RR, = 0 1 0 ||—sin), cosA, O (12)
—sing, 0 cos@, 0 0 1

The first, R, (a positive right-handed rotation about the z-axis by \) takes the z,y,z axes
to z/,y',2'. The z'-axis is coincident with the z-azis and the z’-y’ plane is the Earth's
equatorial plane. The z’-y' plane is the meridian plane passing through P and the y’-axis

is perpendicular to the meridian plane and in the direction of East.

X
/N\e
00‘5;\)/. ”\%@'
Y N\ %‘N«\r\” y z’ cosA\  sinA Oflz
z(2) & \ S ’ )
o L Yy |=|—sinA cosA Olly
}\‘ @) \3.
NG Z 0 0 1|z
v o

The second R, (a rotation about the y-axis by ¢ ) takes the z’,¢',z" axes to the 2”,y", 2"
axes. The z”-axis is parallel to the U-axis, the y”-axis is parallel to the F-axis and the

2"-axis is parallel to the N-axis.

z
|
" . /
N T cos¢p 0 sing||z
y// — 0 1 0 y/
s 2" —sing 0 cos¢||z
i A ®
z' ‘ ¢ N e ¢ RO
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Performing the matrix multiplication in equation (12) gives

Cos @, cos N,  cos@g,sin), sing,
R, =| —sin) cos \, 0 (13)
—sing, cos )\, —sing,sin)\, cos@,
Rotation matrices formed from rotations about coordinate axes are often called Euler

rotation matrices in honour of the Swiss mathematician Léonard Euler (1707-1783). They

are orthogonal, satisfying the condition R"R =1 (i.e., R™' =R").

A re-ordering of the rows of the matrix R, gives the transformation in the more usual

form FE,N,U

E T — I,
Ni=Rly—y, (14)
U z— 2,
—sin )\, COS A\, 0
where R =|—sin@,cos\, —sing,sin), cos@, (15)

COsS @, Cos N\,  cos@g,sin), sing,

From equation (14) we can see that coordinate differences AE = E, — E,, AN =N, — N,
and AU =U, —U, in the local geodetic horizon plane are given by

AE Az
AN|=R|Ay (16)
AU Az

where Az =z, —1x., Ay=y —y and Az =z — 2 are geocentric Cartesian coordinate

differences.

NORMAL SECTION AZIMUTH ON THE ELLIPSOID

The matrix relationship given by equation (16) can be used to derive an expression for the
azimuth of a normal section between two points on the reference ellipsoid. The normal
section plane between points P, and P, on the Earth's terrestrial surface contains the
normal at point F,, the intersection of the normal and the rotational axis of the ellipsoid
at H, (see Figure 3) and P,. This plane will intersect the local geodetic horizon plane in a

line having an angle with the north axis, which is the direction of the meridian at F,.
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This angle is the azimuth of the normal section plane F, — P, denoted as o, and will have

components AE and AN in the local geodetic horizon plane. From plane geometry

AFE

tan Oéw = m (17)
By inspection of equations (15) and (16) we may write the equation for normal section
azimuth between points P, and F, as
—Azsin A\ + A A
tanay, = AFE _ ‘ x sin l—lj yc'os ) (18)
AN  —Azsing cos\ — Aysing sin\ + Azcos ¢,
where Az =z, —z , Ay =y, —y, and Az =2, — 2z
EQUATION OF THE ELLIPSOID IN LOCAL CARTESIAN COORDINATES
The Cartesian equation of the ellipsoid is given by equation (1) as
x? +y2 Z?
! (19)
and multiplying both sides of equation (19) by a® gives
aQ
2+ + b—Qz2 =a’ (20)

2
Re-arranging equation (3) gives Z_Q = ¢’? +1 and substituting this result into equation (20)

and re-arranging gives an alternative expression for the Cartesian equation of an ellipsoid

as

2ty +27 4% —ad’ =0 (21)

We now find expressions for z*,4* and z* in terms of local Cartesian coordinates that
when substituted into equation (21) and simplified will give the equation of the ellipsoid in

local Cartesian coordinates. The relevant substitutions are set out below.

The relationship between geocentric and local Cartesian coordinates is given by equation

(14) as

E T—x,
N|=R|y—y, (22)
U z— 2,
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where the orthogonal rotation matrix R is given by equation (15) as

T Te i S )‘0 cos )‘o 0
R=\n, mn, n,/=|—-sing,cos) —sing sin) cosq,
Ty Ty Ta COSP, cos A, cos@ sin)  sing,

and

T, =V, COS P, COS A\
Y, =V, COS @, sin |

_ 2\
z, =V, (1—6 )sm X
with the radius of curvature of the prime vertical section

a
Vo =
2 s 2
\/l—e sin” ¢,

Re-arranging equation (22) gives

T FE T,
-1
y|=R |N|+|y,
2 U Z,
where
711 751 731
-1 _ pT

R =R _7"12 7‘22 7“32
713 753 753

Expanding equation (26) gives

$:7"11E+7'21N+7"31U+x0
y:7’12E—|—7“22N+7"32U+y0
Z = 7’13E+7’23N+T33U+z0

and

o’ =B + 1y N* + 1 U” + 21,1, EN + 21, 1, EU + 21, 1, NU
2
+ o + 27“11Ex0 + 27‘21Nx0 + 27"31Ux0
y' =B+ N+ 1 U + 21,1, EN + 21,1, BU + 21,1, NU

+yy + 21, By, + 21, Ny, + 21,0y,
2* :7’123E2 +7’22N2 —|—7’323U2 +2r.rn. EN +2r.r. EU +2r.rn. NU

13723 13733 23733

+ zg + 27"13Ez0 + 27“23Nz0 + 27‘33Uz0
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with

o by 2 = () B (o )N () ) U
+2(r7’ +r,n, )EN

11°21 12722 13723

+2<r Ty 1Ty T 1T )EU

11°31 13733

-1-2(7"7" +nr.r., +1n." )NU

2131 2232 2333
2 2 2
+x, Y, T2
+2(n,2, + 1Y 702

1170

E
+2(n,3, + 1,9, + 1547 )N
U

2170

—1—2(7‘ T, + 7Y, + 7’3320>

3170

(30)

Now using the equivalences for 7,7, ,etc given in equation (23), certain terms in equation

117

(30) can be simplified as
4 = sin )+ cos” ), = 1
7521 + 7522 + 7’223 = sin” ?, (cos2 A, T+ sin’ )\0) + cos’ ¢, =1

41 4l = cos’ @, (cos2 A, + sin’ )\O) +sin’ ¢, =1

and
T\ Ty Tyl + 1Ty = SinA sing cos ) — cos A sing sin A\ + 0
=0
Ty LT, LT, = —sin cos @, cos A, + cos A cos @ sin A + 0
=0
o 2 o . 9 .
Ty Ty Ty,  ThgTyy = — SIN G COS P €OS™ | — sin @ cos @, sin” \| + cos ¢, sin ¢,

= —sin¢, cos @, (COS2 A+ sin’ )\0) + cos @, sin @,
=0

Substituting these results into equation (30) gives

2

Py + =B+ N+U oy + 2
+2(n,3 + 1, + 1,7 ) B

11770

+2(n,3, + 1,9, + 152 )N

2170

+ 2 <r31x0 + r32y0 + T33ZO>U (31)
012
Using equation (24) and noting that equation (25) can be re-arranged as 1— e’ sin’ ¢, = =

0

we have
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a2+ Y + 2 =1 cos’ ¢, (cos2 A, + sin® )\O) + v (1 —é’ )2 sin” ¢,
= v} cos’ ¢, + V. sin’ ¢, (1 —2¢* + e4>
= 12 cos’ ¢, + v sin’ ¢, — 2ve’ sin’ @, + vle’ sin® ¢,
=2 — 202" sin’ ¢, + vle' sin’ ¢,
= (1 — ¢’ sin’ ¢0) —vie’sin® ¢, (1 - 62)

it (a1 @)

From equations (31), (23) and (24) we have

T, 1LY, Tz, = —V, c0sg, cos A sin A\, + v, cos @, sin A cos A + 0
=0
_ . 2 o . . 9

T, T, + 1Y, T T2, = —V, COS @, sin @, cos” \| — v, sin @, cos @, sin” )|

+v, (1 — 62) sin ¢, cos ¢,
= —V, Cos @, sin @, (C082 At sin’ A — 1+ 62)

02 :
= —V,€" COoS P, sin g,
and

TyTo 1Y, + T2, = Y, cos’ ?, cos’ A T, cos’ ®, sin’ A TV, (1 — e2> sin’ ?,
=v, cos’ b, TV, (1 — e2> sin’ ?,
=v, cos’ b, TV, sin’ ®, — V0€2 sin’ ?,
=, (1 — ¢’ sin’ qu)
= a2
Substituting these results into equation (31) gives
4y +2=E+N+U +V§ <1—€2 sin2¢0>—1/§e2 sin2¢0<1—62>
— 2u,¢” sin ¢, cos N + 2v, (1 — €’ sin” ¢, ) U (32)

Using the expression for z* given in equation (29), the term e’*2” in equation (21) can be

expressed as

et = 6/2{’/'123E2 +7“223N2 +T323U2 +2r.r. EN +2r.r. EU +2r. . NU

13723 13733 23" 33 (33)

2
+z, + 27‘13Ez0 + 27"23Nz0 + 27“33Uzo}

where
2 AN 2 2 402 a2,
r,=0; 1, =cos ¢; 1, =sin"¢;
27“131“23 = (; 27’137’33 =0 27“237"33 = 2cos gbo sin qﬁo;

2
2 21 2 2
z, =V, (1 e) sin” ¢;

2r.z =0; 2r.z :2yo(1—62)cos¢051n¢0; 2r..z :2y0(1—62)sin2¢0

1370 2370 3370
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and equation (33) can be expressed as
e’ =e” (cos2 ¢,N* + sin® ¢, U* + 2 cos ¢, sin gbONU)
2
+ €” [l/g (1 — 62) sin’ ¢, +2v, (1 — 62)005 ¢, sing, N +2v, (1 — €2> sin’ ¢OU]

2

But e* =

- SO we may write
1—e

2
e’ = e (cosgbON + sin ¢, U)

2 2
+ _ [Vs (1 — 62) sin® ¢, +2v, (1 — 62)cos¢0 sing N +2v, (1 — ez)sin2 ¢0U]
2
_ (Cos ¢, N +sin g, U)
2 2 2 2 2 2 2 9
+ v, (1 —e ) e’ sin” ¢, +2ve” cos ¢, sing N + 2v e sin” ¢ U (34)

Substituting equations (32) and (34) into equation (21) gives

2
E* + N> +U” + ¢" (cos¢0N + sing, U) —a’
+ Vg (1 — ¢’ sin’ gbo) — y§e2 sin’ ?, (1 — e2>
— 2w,e’ sing, cosd, N + 2v, (1 — ¢’ sin’ gbo) U
+ 1/562 sin’ ?, (1 — 62) + 21/062 sin ¢, cos ¢, N + 2V062 sin’ o, U =0

And simplifying and noting that V[Q) (1 — ¢ sin” (;50) = a’ gives the Cartesian equation of the

ellipsoid in local coordinates E,N, U as

2
B+ N+ U” + ¢ (cosg, N +sing, U) +2v,U =0 (35)

The origin of the E,N,U system is at P with coordinates ¢;,\, where the radius of

0770

. . . . a .
curvature of the prime vertical section is v, = — and the first and second

(1 — ¢’ sin’ ?, )5

2
€

1—¢°

eccentricities of the ellipsoid (a, f ) are obtained from e’ = f (2 —f ) and e =

Equation (35) is similar to an equation given by Bowring (1978, p. 363, equation (10) with
r=N y=-U, z=FE). Bowring does not give a derivation, but notes that his equation

is taken from Tobey (1928).
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CARTESIAN EQUATION OF THE NORMAL SECTION CURVE

The Cartesian equation of the normal section curve is developed as a function of local
Cartesian coordinates (,n,& which are rotated from the local E,N, U system by the

azimuth « of the normal section plane.

/ ellipsoid

~ equator

Figure 5: Normal section plane between P, and P, on the ellipsoid

Figure 5 shows a normal section plane having an azimuth « between P, and P, on the

ellipsoid and a local Cartesian coordinate system E,N,U with an origin at P .

Cartesian equations of the ellipsoid in geocentric and local coordinates given by equations
(1), (21) and (35) are:

2 2 2

- +y z

d

Yy + 2+ —a’ =0
. 2
E*+ N +U° +e’2(cos¢0N—|—sin¢0U) +2v,U =0

Consider a rotation of the F,N, U system about the U-axis by the azimuth « so that the
rotated N-axis lies in the normal section plane and the rotated E-axis is perpendicular to

the plane. Denote this rotated E,N,U system as (,n,¢ shown in Figure 6
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/ ellipsoid

equator

Figure 6: Rotated local coordinate system (,n,&

These two local Cartesian systems; E,N,U and (,n,£ are related by

N A n

cosaa —sina O||FE

¢
n|=|sina cosa O||N
13 0 0 1H|\U

d
@ Ul o
E cosa sina 0||C
E cos o ' N|=|-sina cosa 0ln
5 U 0 0 1|l¢
and we may write
E = (cosa + nsina; E? = ®cos” a + n* sin® a + 2(n cos asin o
N =ncosa —(sina; N? = *sin® a 4+ n° cos” a — 2(n cos o sin o
Uzg U2:§2

giving

E2+N2+U2:C2+n2+§2
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Substituting equations (36) and (37) into equation (35) gives

CHn+&+e”? <—Csinacos¢0 + 1) cos o cos ¢, + §sin¢0)2 +2w, =0 (38)

This is the Cartesian equation of an ellipsoid where the local Cartesian coordinates (,n,&
have an origin at P, (gbo,)\o) on the ellipsoid (a, f) with the &-axis in the direction of the
outward normal at P, ; the £-n plane is coincident with the normal section plane making
an angle o with the meridian plane of P ; and the £-¢ plane is perpendicular to the
normal section plane. As before the radius of curvature of the prime vertical section is

v,o= a — and the first and second eccentricities of the ellipsoid are obtained

(1 — e’ sin’ ¢0)5

2
€

1—¢*

from e’ :f(2—f) and e =

Setting ¢ = 0 in equation (38) will give the equation of the normal section plane as

n+& +e” (n cosacos @, + £sin g, )2 +2,6=0 (39)

Expanding equation (39) gives
n’ + n’e’”® cos® a cos’ o, + £ + e sin’ o, + 2née’” cos a cos ¢, sing, +2v,§ =0

which can be simplified to

€1+ %)+ 2engh + 1 (14 5*) + 20,6 = 0 (40)

where g and h are constants of the normal section and

e

sin ¢,
1—¢
: (41)

1—¢?

_ _
g=esing, =

_ ! _ :
h = €' cosacos g, = cos asin ¢

Equation (40) is similar to Clarke (1880, equation 14, p. 107) although Clarke's derivation

is different and very concise; taking only 11 lines of text and diagrams.
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POLAR EQUATION OF THE NORMAL SECTION CURVE

normal section curve

Figure 7: Normal section curve f (5,7])

The Cartesian equation of the normal section curve in local coordinates &,n,( = 0 is given
by equations (40) and (41) given the latitude ¢, of P, the ellipsoid constant e¢* and the

azimuth a of the normal section plane.

The equation of the curve in polar coordinates r,6; where ris a chord of the curve and 6

is the zenith distance of the chord, can be obtained in the following manner.

First, from Figure 7, we may write

& =rcosf
42
n=rsinf (42)

And second, we may re-arrange equation (40) as
2 2 2
€4+ (g€ +hn) =-2¢ (43)
Squaring equations (42) and adding gives
E+n' =r’cos’@+r’sin’ 0 =1’ (44)
and the third term in equation (43) can be expressed as
2 2
(gE + hn) = (grcosH + hrsin@)
= ¢°r’ cos’ 0 + h°r’ sin® 0 + 2gh 1’ sin 0 cos 0
=7’ (gcos@ —l—hsin9)2 (45)
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Substituting equations (44) and (45) into equation (43) and re-arranging gives the polar

equation of the normal section curve

. —21/0 cosf (46)

2
1—|—(gcos@—|—hsin9)

ARC LENGTH ALONG A NORMAL SECTION CURVE

To evaluate the arc length s along the normal section curve, consider the following

Figure 8: Small element of arc length along a normal section curve

In Figure 8, when A is small, then AM ~ r Af and the arc length As is approximated

by the chord AB and (As)2 o~ (r AQ)Q + (Ar>2 or

As = \/(mef +(ar)

2
2 Ar
= |(A0) |7 +|—
(aof e+ 3]
and
2
As_ |2 |Ar
N Af
. . As .
Taking the limit of A0 as A6 — 0 gives
As) d dr\
s s r
lim|—|=—=,[r" +|— 47
A%%[Ae] a0\ [d@] 47)
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and the arc length is given by

1
212

il g (48)

do

s:fds:():f% r’ +
0=0,

Referring to Figure 7 the n-axis is tangential to the normal section curve PP, at P and

the zenith distance 6 = GA = % and r =0. And when 8 = 03 = 02 then the chord

r = PP, and the arc length of the normal section curve is given by

D | =

6=0, 2
s = fds = f r? +[%] dao (49)

9="
2

7 is given by equation (46) with normal section constants g and h given by equations (41).

The derivative % can be obtained from equation (46) using the quotient rule for

differential calculus

v
dr _djul__do " do (50)
dg  do v’
where
u = —2v, cosb; v :1%—(‘(10039—|—hsin9)2
du dv (51)
0 = 2v,sin0; 0 :2(gcos9—i—hsin@)(hcos@—gsin@)

The arc length of the normal section curve between P, and P, can be found by evaluating

the integral given in equation (49). This integral cannot be solved analytically but may be

evaluated by a numerical integration technique known Romberg integration. Appendix 1
contains a development of the formula used in Romberg integration as well as a MATLAB

function demonstrating the algorithm.
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SOLVING THE DIRECT AND INVERSE PROBLEMS ON THE ELLIPSOID USING
NORMAL SECTIONS

The direct problem on an ellipsoid is: given latitude and longitude of P, azimuth « , of

the normal section PP, and the arc length s along the normal section curve; compute the

latitude and longitude of P,.

The inverse problem on an ellipsoid is: given the latitudes and longitudes of P, and P,

compute the azimuth a, and the arc length s along the normal section curve PP, .

Note 1. In general there are two normal section curves joining P and P,. We are only
dealing with the single normal section PP, (containing the normal at P — see
Figure 3) and so only the forward azimuth o, is given or computed. The reverse
azimuth a,, is the azimuth of the normal section PP, (containing the normal at

P, ) which is a different curve from normal section curve PF,.

Note 2. The usual meaning of: solving the direct and inverse problems on the ellipsoid
would imply the use of the geodesic; the unique curve defining the shortest
distance between two points. And solving these problems is usually done using
Bessel's method with Vincenty's equations (Deakin & Hunter 2007) or Pittman's
method (Deakin & Hunter 2007).

In the solutions of the direct and inverse problems set out in subsequent sections, the
following notation and relationships are used.
a, f semi-major axis length and flattening of ellipsoid.

b semi-minor axis length of the ellipsoid, b = a(1— f)

2

e’ eccentricity of ellipsoid squared, ¢’ = f(2 — f)

62
1—¢?

¢, A\ latitude and longitude on ellipsoid: ¢ measured 0° to +90° (north latitudes

e* 2nd-eccentricity of ellipsoid squared, e’> =

positive and south latitudes negative) and A measured 0° to +180° (east
longitudes positive and west longitudes negative).
s length of the normal section curve on the ellipsoid.
oy, azimuth of normal section PP,
a,, azimuth of normal section PP, (measured in the local horizon plane of P,)
a,, reverse azimuth; azimuth of normal section PP,
¢ chord PP,
0 zenith distance of the chord ¢
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x,y,z are geocentric Cartesian coordinates with an origin at the centre of the
ellipsoid and where the z-axis is coincident with the rotational axis of the
ellipsoid, the z-z plane is the Greenwich meridian plane and the z-y plane is
the equatorial plane of the ellipsoid.

x'y',z" are geocentric Cartesian coordinates with an origin at the centre of the
ellipsoid and where the z'-axis is coincident with the rotational axis of the
ellipsoid, the z'-z' plane is the meridian plane of P, and the z'-y' plane is the
equatorial plane of the ellipsoid. The z',y',2' system is rotated from the z,y,z
system by an angle A about the z-axis.

vectors a vector a defining the length and direction of a line from point 1 to point 2
is given by the formula a =ai+aj+ak where o, =z, -2, a, =y, —y,
and a, = z, — 7, are the vector components and i, j, and k are unit vectors in

the direction of the positive z, y, and z axes respectively. The components of

. N a ..
a unit vector a = H can be calculated by dividing each component by the
a

magnitude of the vector ‘a‘ = Jaf + aj. + aZ .

For vectors a and b the vector dot product is aeb = ‘aHb‘ cos where 0 is

the angle between the vectors. For unit vectors a «b = cosf. The vector

dot product is a scalar quantity S = ab. + ajbj +a,b,, hence for unit vectors
the angle between them is given by cosf = §'.

For vectors a and b the vector cross product is axb = ‘aHb‘ sindp where p

is a unit vector perpendicular to the plane containing a and b and in the
direction of a right-handed screw rotated from a to b. The result of a vector
cross product is another vector whose components are given by

axb= (a‘jbk — akbj)i — (aibk — akbi>j + (aibj — a],bi) k. The components of the
unit vector p are found by dividing each component of the cross product by
the magnitudes ‘a‘ and ‘b‘, and the sine of the angle between them. For unit

vectors Ax b = sinfdp and for perpendicular unit vectors a x b =p.
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THE DIRECT PROBLEM ON THE ELLIPSOID USING A NORMAL SECTION

The direct problem is: Given latitude and longitude of P, azimuth «a,, of the normal

section PP, and the arc length s along the normal section curve;

compute the latitude and longitude of P,.

With the ellipsoid constants a, f, e* and e’* and given ¢, A\, and s the problem may be

solved by the following sequence.

1. Compute v, the radius of curvature in the prime vertical plane of F from

a

(1 — ¢’ sin” ¢1);

VIZ

2. Compute the constants g and h of the normal section PP, from

g = ¢€'sin ?, - _gin ?,
V1—¢’
€

_ _
h = e’ cosa,, cos ¢, =

— cos v, sin ¢,
—e

3. Compute the chord ¢ = PP, and the zenith distance ¢ of the chord PP, by iteration

2

using the following sequence of operations until there is negligible change in the

computed chord distance

start Set the counter Kk =1 and set the chord c,=s

(i) Set the counter n =1 and set the zenith distance 0 = g

(ii) Use Newton-Raphson iteration to compute the zenith distance of the

chord using equation (46) rearranged as

f(@) =c+ c(g cos @ + hsin 0)2 —2v, cosf) = 0 and the iterative formula

0., =0 — % where f’ (0”> is the derivative of f (0n> and
2

f(@nr) =c +c (g cos 9" + hsin 9") —2v, cos Qn
f (971’) = 2c, (g cos + hsinf ) (h cos) —gsinf ) —2v, sinf

Note that the iteration for 6 is terminated when 6 and ¢ , differ by an
acceptably small value.

(iii) Compute the arc length s, using Romberg integration given a, f,¢,c,,,0
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(iv) Compute the small change in arc length ds =s_—s
(v) If ds < 0.000001 then go to end; else go (vi)

(vi) Increment k, compute new chord ¢, =¢,_, —ds and go to (i)

1

end Iteration for the chord ¢ = PP, and the zenith distance 6 of the chord

PP, is complete.

4. Compute the z,y,z coordinates of P, using

T, =V, COSQ COS\
Y, = v, Cos @ sin \
z, =V, (1 — eg)singbl
5.  Compute coordinate differences Az’,Ay’ Az’ in the z’,y,2" using

r_ . .

Az’ = —csinfcosa,, sing, + ccosfcos @,
I . .

Ay’ = csinfsina,

I . .
Az" = csinfcosa,, cos @, + ccossin ¢,

6. Rotate the z',y',2' coordinate differences to z,y,z coordinate differences by a rotation

of A about the z-axis using

Az = Aw'cos)\1 — Ay'sin)\1
Ay = Aa;'sin)\l + Ay'cos)\1

Az = A7
7. Compute z,y,z coordinates of P, using
T, =1, +Ax
Yy =y, + Ay
z, =z + Az

8. Compute latitude and longitude of P, by conversion z,y,z = ¢,A\,h using Bowring's
method.

Shown below is the output of a MATLAB function nsection_ direct.m that solves the
direct problem on the ellipsoid for normal sections.

The ellipsoid is the GRS80 ellipsoid and ¢,A for P are —10° and 110° respectively with
a,, = 140° 28'31.981931” and s = 5783228.924736 m. ¢,\ computed for P, are —45°

and 155° respectively.
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>> nsection_direct

/1177777777777 7/77/7/7/77/77/77/7777
// Normal Section: Direct Case //
/117777777777 /7/77/7/7//77/77/7/7777

ellipsoid parameters

a = 6378137.000000000
f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003

Latitude P1
Longitude P1

-10 0 0.000000 (D M S)
110 0 0.000000 (D M S)

Azimuth of normal section P1-P2
Az12 = 140 28 31.981931 (D M S)

normal section distance P1-P2
S = 5783228.924736

chord distance P1-P2
c = 5586513.169887
iterations = 13

Zenith distance of chord at P1
zd = 116 2 20.450079 (D M S)
iterations = 5

Cartesian coordinates

X Y Z
P1 -2148527.045536 5903029.542697 -1100248.547700
p2 -4094327.792179 1909216.404490 -4487348.408756

dX = -1945800.746643
dy = -3993813.138207
dz = -3387099.861057

Latitude P2
Longitude P2

-45 0 0.000000 (D M S)
154 59 60.000000 (D M S)

>>
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THE INVERSE PROBLEM ON THE ELLIPSOID USING A NORMAL SECTION

The inverse problem is: Given latitudes and longitudes of F, and P, on the ellipsoid

compute the azimuth a;, of the normal section PP, and the arc

length s of the normal section curve.

With the ellipsoid constants a, f, ¢* and e’ and given ¢, and ¢,,), the problem may be

solved by the following sequence.

1. Compute v, and v, the radii of curvature in the prime vertical plane of P, and P,

from

a

UV =

(1 — e’ sin’ gzﬁ);

2. Compute the z,y,z coordinates of F, P,, P, and P, noting that P, is at the

3

intersection of the normal through P, and the rotational axis of the ellipsoid and P,
is at the intersection of the normal through P, and the rotational axis. Coordinate

of P, and P, are obtained from

T = 1/ COS P Cos A
Yy = v cos¢sin A
z= V(1—62>Sin¢

The z and y coordinates of P, and P, are zero and the z coordinate is obtained from

2z = —ve’sin¢
3. Compute the coordinate differences

Ax::vg—xl

Ay=1y, —y,
AZZZQ—Zl

4a. Compute vector ¢ = (Ax)i + (Ay)j + (Az)k in the direction of the chord PP,.

4b. Compute chord distance ¢ = ‘c‘ and the unit vector ¢ = ‘c_‘
c

5. Compute vector u = (ml)i + (yl)j + (zl — zg)k and the unit vector a = ﬁ in the
u

direction of the outward normal through P, .
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10.

11.

12.

13.

14.

Set the unit vector z=0i+4 0j+ 1k in the direction of the zaxis
Compute the zenith distance of the chord from the vector dot product
cos = u.c + ﬁjéj + ¢,
Compute the unit vector e perpendicular to the meridian plane of P, from vector
cross product (€ is in the direction of east)
Zu, — 2.0,

Cos @,

. zZxXu
e = =
cos ¢,

17 J i
cos ¢,

k

zjuk — zkuj]i _

cos @,

Compute the unit vector n in the meridian plane of P, from vector cross product.

(1 is in the direction of north)
i=tixé=(ié —aé )i—(ié —ie)i+(ie —ie )k

Compute the unit vector p perpendicular to the normal section PP, from vector

cross product. (p lies in the local horizon plane of P )

UG —

U
sin 6

~

ki

C.
j i

uc, —
L)

U
sin 0

>

p= = i— i+ k

uxce uj k —Ukcj
sin 6 0

sin
Compute the unit vector g in the local horizon plane of P, and in the direction of
the normal section PP, from vector cross product.

g =pxi=(pi, —pi)i—(pi, —pa)i+(pi, —pi)k

Compute the azimuth «, if the normal section PP, using vector dot products to

first compute angles a (between n and g) and § (between € and g) from

If 8>90° then a, = 360° —«;else o, =«

W

Compute the vector w = (iBl)i + (y1>j + (21 — z4)k and the unit vector w = (w is

u
in the direction of the line P P and lies in the meridian plane of P,).
Compute the angle v between W and ¢ from the vector dot product

cosy = we, + 121],6]. +w,e,
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15.

16.

17.

18.

19.

20.

Compute the angle § between w and u from the vector dot product (6 lies in the

meridian plane of P,)

cosd = WU, + Wi, +w, 1,

Compute the unit vector q perpendicular to the normal section PP, from vector

cross product

W X € w, ¢,

q =
sin

we, —w,c
l— ik sz
g

—w,
sin vy

sin 7y

Compute the unit vector h in the local horizon plane of P and in the direction of

the normal section P,P, from vector cross product.

h = qxu _ quAk _quaj i— 4,4, — 4,4,
cosd cosd cosd

Compute the azimuth 041/2 of the normal section P, P, using vector dot products to

first compute angles o (between n and h) and 8 (between é and h) from

COS ¥

D‘> ;~>

n,
eh

+1i, ii i h,
cos 3 é i ﬁ
If 3>90° then 041'2 = 360° — a; else a1’2 =«

Compute the small angle ¢ between the two normal section planes at P,

_ !
€= ‘0412 a12‘

Compute arc length s along the normal section curve PP, using Romberg

Integration.

Shown below is the output of a MATLAB function nsection_inverse.m that solves the

inverse problem on the ellipsoid for normal sections.

The ellipsoid is the GRS80 ellipsoid and ¢,A for P are —10° and 110° respectively and

¢, A for P, are —45° and 155° respectively.

Computed azimuths are «, = 140° 28'31.981931” and 041'2 = 140° 32"18.496009” , and

5§ =5783228.924736 m .
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>> nsection_inverse

/1177777777777 7/77/77/7//7/7/77/7/7777
// Normal Section: Inverse Case //
/1177777777777 7/77/77/7//7/7/77/7/7777

ellipsoid parameters

a = 6378137.000000000
f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003

Latitude P1
Longitude P1

-10 O 0.000000 (D M S)
110 O 0.000000 (D M S)

Latitude P2
Longitude P2

-45 0 0.000000 (D M S)
155 0 0.000000 (D M S)

Cartesian coordinates

X Y Z
P1 -2148527.045536 5903029.542697 -1100248.547700
P2 -4094327.792180 1909216.404490 -4487348.408755

P3 0.000000 0.000000 7415.121539
P4 0.000000 0.000000 30242.470131
dX = -1945800.746645
dy = -3993813.138206
dz = -3387099.861055

Chord distance P1-P2
chord = 5586513.169886

Zenith distance of chord at P1
zd = 116 2 20.450079 (D M S)

Azimuth of normal section P1-P2
Az12 = 140 28 31.981931 (D M S)

Azimuth of normal section P2-P1
Az21 = 297 47 44.790362 (D M S)

Azimuth of normal section P2-P1 at P1
Az"12 = 140 32 18.496009 (D M S)

Angle between normal sections at P1
epsilon = 0 3 46.514078 (D M S)

ROMBERG INTEGRATION TABLE

5783427 .529966

5783278.294728 5783228.549649

5783241.249912 5783228.901640 5783228.925106

5783232.004951 5783228.923298 5783228.924742 5783228.924736
5783229.694723 5783228.924646 5783228.924736 5783228.924736

QA WNE

normal section distance P1-P2
s = 5783228.924736

>>
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DIFFERENCE IN LENGTH BETWEEN GEODESIC AND NORMAL SECTION

There are five curves of interest in geodesy; the geodesic, the normal section, the great

elliptic arc the loxodrome and the curve of alisnment.

The geodesic between P, and P, on an ellipsoid is the unique curve on the surface defining

the shortest distance; all other curves will be longer in length. The normal section curve

PP, is a plane curve created by the intersection of the normal section plane containing the

normal at P and also P, with the ellipsoid surface. And as we have shown there is the

other normal section curve P,P,. The curve of alignment is the locus of all points @) such

that the normal section plane at @ also contains the points P, and P,. The curve of

alignment is very close to a geodesic. The great elliptic arc is the plane curve created by

intersecting the plane containing P, P, and the centre O with the surface of the ellipsoid

and the loxodrome is the curve on the surface that cuts each meridian between P1 and P2

at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal
section curve and the curve of alignment were developed by Clarke (1880, p. 133) and
Bowring (1972, p. 283) developed an approximate equation for the difference between the
geodesic and the great elliptic arc. Following Bowring (1972), let

s = geodesic length

L = normal section length

D = great elliptic length

S = curve of alignment length

then
4 4
I € ) 4 ) 2
—s _%5 i cos” ¢, sin” oy, cos” ay, + -+
4 2
D—s :S—45[%J sin® ¢, cos® ¢, sin’ ar, + -+ (52)
4 4
g - e S 4 . 9 2
—s —%S[E] cos” ¢, sin” o, cos” a, + -+

where R can be taken as the radius of curvature in the prime vertical at P . Now for a

given value of s, L —s will be a maximum if ¢, = 0° (P, on the equator) and o, = 45" in

1
: 4 <2 2
which case cos” ¢, sin” o, cos” ), = 1 thus

Normal Section.doc 30



4

(L—s)<——s|= (53)

For the GRS80 ellipsoid where f = 1/298.257222101, 2 = f(z - f), and for s = 1600000 m
and R = 6371000 m and equation (53) gives L —s < 0.001 m.

This can be verified by using two MATLAB functions: Vincenty Direct.m that computes
the direct case on the ellipsoid for the geodesic and nsection inverse.m that computes the
inverse case on the ellipsoid for the normal section. Suppose P has latitude and longitude
¢, =07, A =0° on the GRS80 ellipsoid and that the azimuth and distance of the geodesic
are o, = 45" and s =1600000 m respectively. The coordinates of P, are obtained from

Vincenty Direct.m as shown below. These values are then used in nsection_ direct.m to

compute the normal section azimuth and distance PP,.

The difference L —s = 0.000789 m .

>> Vincenty_Direct

L11777777777777777/777777/7777/77//7//77/77//77
// DIRECT CASE on ellipsoid: Vincenty"s method
L1177 1777777777777/777777/777/77/77//77/77//77

ellipsoid parameters
a 6378137.000000000

L = 1/298.257222101000

b = 6356752.314140356100
e2 = 6.694380022901e-003
ep2 = 6.739496775479e-003

Latitude & Longitude of P1
latP1 0O O 0.000000 (D MS)
lonP1 0O O 0.000000 (DM S)

Azimuth & Distance P1-P2
azl2 45 0 0.000000 (D M S)
s 1600000.000000

Latitude and Longitude of P2
latP2 = 10 10 33.913466 (D M S)
lonP2 = 10 16 16.528718 (D M S)

Reverse azimuth
alpha21 = 225 55 1.180693 (D M S)

>>

>> nsection_inverse

/1117777777777 7//7777////77/7//7777
// Normal Section: Inverse Case //
/1111777777777 77/77777////777//7777

ellipsoid parameters
a 6378137 .000000000

f = 1/298.257222101000
e2 = 6.694380022901e-003
ep2 = 6.694380022901e-003

Latitude P1
Longitude P1

0 0 0.000000 (D M S)
0 0 0.000000 (D M S)

Latitude P2
Longitude P2

10 10 33.913466 (D M S)
10 16 16.528718 (D M S)

Azimuth of normal section P1-P2
Az12 = 45 0 7.344646 (D M S)

ROMBERG INTEGRATION TABLE

1 1600010.313769

2 1600002.577521 1599999.998771

3 1600000.644877 1600000.000663 1600000.000789

4 1600000.161805 1600000.000781 1600000.000789
1600000.000789

normal section distance P1-P2
s = 1600000.000789

>>

Differences in length between the geodesic and normal section exceed 0.001 m for distances

greater than 1,600 km. At 5,800 km the difference is approximately 0.380 m.
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MATLAB FUNCTIONS

Shown below are two MATLAB functions nsection_ direct.m and nsection_inverse.m that

have been written to demonstrate the use of Romberg integration in the solution of the
direct and inverse case on the ellipsoid using normal sections. These functions call other

functions; DMS.m, Cart2Geo.m and romberg.m that are also shown.

MATLAB function nsection_ direct.m

function nsection_direct

% nsection_direct: This function computes the direct case for a normal
% section on the reference ellipsoid. That is, given the latitude and
% longitude of P1 and the azimuth of the normal section P1-P2 and distance
% along the normal section curve, compute the latitude and longitude of P2.

% Function: nsection_direct

% Usage: nsection_direct

%

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 23 September 2009

% Version 1.1 16 December 2009

%

% Purpose: nsection_inverse: This function computes the direct case for

% a normal section on the reference ellipsoid. That is, given the

% latitude and longitude of P1 and the azimuth of the normal section P1-P2
% and distance along the normal section curve, compute the latitude and

% longitude of P2.

% Functions required:

% |[D,M,S] = DMS(DecDeg)

% s = romberg(a,f,latl,Az12,zd)

% [lat,lon,h] = Cart2Geo(a,flat,X,Y,2)

% Variables:

% Azl1l2 - azimuth of normal section P1-P2

% a - semi-major axis of spheroid

% d2r - degree to radian conversion factor 57.29577951. ..
% e2 - eccentricity of ellipsoid squared

% eps - 2nd-eccentricity squared

% F - f = 1/flat is the flattening of ellipsoid

% flat - denominator of flattening of ellipsoid

% F zd - function of the zenith distance

% fdash_zd - derivative of the function of the zenith distance
% g,h - constants of normal section

% latl - latitude of P1 (radians)

% lat2 - latitude of P2 (radians)

% lonl - longitude of P1 (radians)

% lon2 - longitude of P2 (radians)

% nul - radius of curvature in prime vertical plane at P1
% pion2 - pi/2

% s - arc length of normal section P1-P2

% s2 - sin-squared(latitude)

% X,y - local variables in newton-Raphson iteration for zenith
% distance of chord P1-P2

% X1,Y1,Z1 - Cartesian coordinates of P1
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% X2,Y2,72 Cartesian coordinates of P2
% X3,Y3,Z3 Cartesian coordinates of P3
% X4,Y4,Z4 - Cartesian coordinates of P4
% zd zenith distance of chord

% Remarks:

% References:

% [1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
% Lecture Notes, School of Mathematical and Geospatial Sciences,
% RMIT University, November 2009.

% Set degree to radian conversion factor and pi/2
d2r = 180/pi;
pion2 = pi/2;

% Set ellipsoid parameters
a = 6378137; % GRS80

flat = 298.257222101;

% Compute ellipsoid constants

f = 1/flat;

e2 = f*(2-1);

ep2 = e2/(1-e2);

% Set lat and long of P1 on ellipsoid
latl = -10/d2r;

lonl = 110/d2r;

% Set azimuth of normal section P1-P2 and arc length of normal section
Az12 = (140 + 28/60 + 31.981931/3600)/d2r;

s = 5783228.924736;

% [1] Compute radius of curvature in the prime vertical plane at P1
s2 sin(lat1)”2;

nul a/sqrt(l-e2*s2);

% [2] Compute constants g and h of the normal section P1-P2

ep = sqgrt(ep2);
g = ep*sin(latl);
h = ep*cos(latl)*cos(Az12);

% [3] Compute the chord and the zenith distance of the chord of the normal
% section curve P1-P2 by iteration.

% Set the chord equal to the arc length
Cc = s;
iter_1 = 1;
while 1
% Set the zenith distance to 90 degrees
zd = pion2;
% Compute the zenith distance of the chord using Newton-Raphson iteration
iter 2 = 1;
while 1
g*cos(zd)+h*sin(zd);
h*cos(zd)-g*sin(zd);
~ zd = ct+c*x*x+2*nul*cos(zd);
fdash_zd = 2*c*x*y-2*nul*sin(zd);
new_zd = zd-(f_zd/fdash_zd);
if abs(new_zd - zd) < le-15
break;

=< X

end
zd = new_zd;
if iter 2 > 10
fprintf("lteration for zenith distance failed to converge after 10
iterations”);
break;
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end
iter 2 = iter_ 2 + 1;
end;
% Compute normal section arc length for zenith distance
s _new = romberg(a,f,latl,Az12,zd);
ds = s_new-s;
if abs(ds) < le-6
break;
end
cC =c - ds;
if iter 1 > 15
fprintf("lteration for chord distance failed to converge after 15 iterations®);
break;
end
iter_ 1 = iter_1 + 1;
end;

% [4] Compute X,Y,Z Cartesian coordinates of Pl

X1 = nul*cos(latl)*cos(lonl);
Y1 = nul*cos(latl)*sin(lonl);
Z1 = nul*(1-e2)*sin(latl);

% [5] Compute X",Y",Z" coord differences with Z"-X" plane coincident with meridian
% plane of P1

dXp = -c*sin(zd)*cos(Az12)*sin(latl) + c*cos(zd)*cos(latl);
dYp = c*sin(zd)*sin(Az12);
dZp = c*sin(zd)*cos(Azl1l2)*cos(latl) + c*cos(zd)*sin(latl);

% [6] Rotate X",Y",Z" coord differences by lonl about Z"-axis

dX = dXp*cos(lonl) - dYp*sin(lonl);
dY = dXp*sin(lonl) + dYp*cos(lonl);
dz = dzp;

% [7] Compute X,Y,Z coords of P2
X2 = X1 + dX;

Y2 = Y1 + dY;

72 = 71 + dZ;

% [8] Compute lat, lon and ellipsoidal height of P2 using Bowring"s method
[lat2,1on2,h2] = Cart2Geo(a,flat,X2,Y2,Z2);

fprintf("\n/////////7////7//7/77//777/777777777);
fprintf("\n// Normal Section: Direct Case //%);
fprintf("\n//////////////7//7/7/777/7/77/77777777);
fprintf("\n\nellipsoid parameters”);

fprintf("\na = %18.9f",a);
fprintf("\nf = 1/%16.12F" ,flat);
fprintf("\ne2 = %20.12e",e2);
fprintf("\nep2 = %20.12e",e2);

% Print lat and lon of P1
[D,M,S] = DMS(latl*d2r);
ifD==024&& latl <0
fprintf(*\n\nLatitude P1
else
fprintf(*\n\nLatitude P1
end
[D,M,S] = DMS(lonl*d2r);
ifD==024&& lonl <O
fprintf("\nLongitude P1
else
fprintf("\nLongitude P1 = %4d %2d %9.6f (D M S)",D,M,S);
end

-0 %2d %9.6F (D M S)",M,S);

%4d %2d %9.6F (D M S)",D,M,S);

-0 %2d %9.6F (D M S)*",M,S);

% Print azimuth of normal section
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fprintf("\n\nAzimuth of normal section P1-P2%);

[D,M,S] = DMS(Az12*d2r);

fprintf("\nAz12 = %3d %2d %9.6F (D M S)",D,M,S);

% Print normal section distance P1-P2
fprintf("\n\nnormal section distance P1-P2%);

fprintf("\ns = %15.6F",s);

% Print chord distance P1-P2

fprintf("\n\nchord distance P1-P2%);

fprintf("*\nc = %15.6f",c);

fprintf("\niterations = %4d",iter_1);

% Print zenith distance of chord at point 1
fprintf(*\n\nZenith distance of chord at P1%);

[D.M,S] = DMS(zd*d2r);

fprintf(*\nzd = %3d %2d %9.6F (D M S)*,D,M,S);
fprintf("\niterations = %4d",iter_2);

% Print Coordinate table

fprintf("\n\nCartesian coordinates”);

fprintf("\n X
fprintf("\nP1  %15.6F %15.6F
fprintf("\nP2  %15.6F %15.6F

fprintf("\ndX = %15.6F",dX);
fprintf("\ndY = %15.6F",dY);
fprintf("\ndzZ = %15.6f",d2);

% Print lat and lon of P2
[D,M,S] = DMS(lat2*d2r);
ifD==02¢&& lat2 < O
fprintf("\n\nLatitude P2
else
fprintf("\n\nLatitude P2
end
[D,M,S] = DMS(lon2*d2r);
ifD==02&& lon2 <0
fprintf("\nLongitude P2
else
fprintf("\nLongitude P2
end

fprintf("\n\n");
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%15.6F",X1,Y1,71);
%15.6F",X2,Y2,722);

-0 %2d %9.6F (D M S)".M,S);

%4d %2d %9.6F (D M S)",D,M,S);

-0 %2d %9.6F (D M S)*",M,S);

%4d %2d %9.6F (D M S)",D,M,S);
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MATLAB function nsection_inverse.m

f

unction nsection_inverse

nsection_inverse: This function computes the inverse case for a normal
section on the reference ellipsoid. That is, given the latitudes and
longitudes of two points on the ellipsoid, compute the azimuth and the
arc length of the normal section.

Function: nsection_inverse()
Usage: nsection_inverse

Author: R.E.Deakin,
School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
email: rod.deakin@rmit.edu.au
Version 1.0 21 September 2009
Version 1.1 16 December 2009

Purpose: nsection_inverse: This function computes the inverse case for
a normal section on the reference ellipsoid. That is, given the
latitudes and longitudes of two points on the ellipsoid, compute the
azimuth and the arc length of the normal section.

Functions required:
[D,M,S] = DMS(DecDeq)

Variables:
alpha - angle in the local horizon plane measured from north
Az12 - azimuth of normal section P1-P2
Azdash12 - azimuth of normal section plane P2-P1 measured at Pl
Az21 - azimuth of normal section P2-P1
a - semi-major axis of spheroid
beta - angle in the local horizon plane measured from east
chord - chord distance between P1 and P2
ci,cj,ck - components of unit vector c in the direction of the chord
P1-pP2
delta - angle in the meridian plane of P1 between w and u vectors
diff - difference between successive value of integral in Romber
Integration
du,dv,dr - derivatives in Romberg Integration
dX,dy,dz - Cartesian components of chord between between P1 and P2
d2r - degree to radian conversion factor 57.29577951. ..
ei,ej,ek - components of unit vector e in the direction of east in
local horizon system
epsilon - small angle between azimuths of normal section planes
ep2 - 2nd-eccentricity squared
e2 - 1st-eccentricity squared
T - ¥ = 1/flat is the flattening of ellipsoid
finish - integer flag (1 or 0) to test for end of Romberg
Integration
first - Ffirst value in trapezoidal rule in Romberg Integration
flat - denominator of flattening of ellipsoid
gamma - angle between unit vectors w and c
g,h - constants of normal section curve
hi,hj,hk - components of unit vector h in the local horizon plane and
direction of the plane P1-P2-P4
Integral - value of integral from trapezoidal rule in Romberg
Integration
inc - interval width in trapezoidal rule
int - number of intervals in trapezoidal rule where int = 27k
and k = 1:m
3.k - integer counters in Romberg Integration
last - last value in trapezoidal rule in Romberg Integration
latl - latitude of P1 (radians)
lat2 - latitude of P2 (radians)
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dz2
pi

%
a
Tl

%
f
e2

ep

%

la
lo
la
lo

lonl - longitude of P1 (radians)

lon2 - longitude of P2 (radians)
m - maximum power of 2 to determine number of intervals in
trapezoidal rule

norm - length of vector
nul, nu2 - radii of curvature in prime vertical plane at P1 and P2
ni,nj,nk - components of unit vector n
pion2 - pi/2

qi,qj,gk - components of unit vector q perpendicular to plane

P1-P2-P4

r - polar coordinate in polar equation of normal section
S - n,n array of Integrals in Romberg Integration
sum - summation in trapezoidal rule
s2 - sin-squared(latitude)
ui,uj,uk - components of unit vector u
wi,wj ,wk - components of unit vector w
X,y - variables in Romberg Integration
X1,Y1,71 - Cartesian coordinates of P1
X2,Y2,722 - Cartesian coordinates of P2
X3,Y3,Z3 - Cartesian coordinates of P3
X4,Y4,74 - Cartesian coordinates of P4
zd - zenith distance of chord
Remarks:

P1 and P2 are two point on the ellipsoid and in general there are two
normal section curves between them. P3 is at the intersection of the
rotational axis of the ellipsoid and the normal through P1. P4 is at
the intersection of the rotational axis of the ellipsoid and the normal
through P2. The normal section P1-P2 is the plane P1-P2-P3. The normal
section P2-P1 is the plane P1-P2-P4 and since P3 and P4 are not
coincident (in general) then the two planes create two lines on the
ellipsoid and two lines on the local horizon plane at P1.

The necessary equations for the solution of the inverse problem (normal
sections) on the ellipsoid are described in [1]. The vector
manipulations to determine the difference between the two normal section
plane azimuths (measuered in the local horizon at P1) follows a vector
method of calculating azimuth given in [2].

This function uses Romberg Integration to compute the arc length along
the normal section curve. This technique of numerical integration is
described in detail in [1].

References:
[1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
Lecture Notes, School of Mathematical and Geospatial Sciences,
RMIT University, November 2009.
[2] Deakin, R. E., (1988), "The Determination of the Instantaneous
Position of the NIMBUS-7 CZCS Satellite', Symposium on Remote
Sensing of the Coastal Zone, Queensland, 1988.

Degree to radian conversion factor
r 180/pi;
on2 pi/2;

Set ellipsoid parameters

= 6378137; % GRS80
at = 298.257222101;
Compute ellipsoid constants
= 1/flat;
= f~(2-1);
2 = e2/(1-e2);
Set lat and long of P1 and P2 on ellipsoid
tl = -10/d2r;
nl = 110/d2r;
t2 = -45/d2r;
n2 = 155/d2r;
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% [1] Compute radii of curvature in the prime vertical plane at P1 & P2
s

2 = sin(latl)”"2;

nul = a/sqrt(l-e2*s2);
s2 = sin(lat2)"2;

nu2 = a/sqrt(l-e2*s2);

% [2] Compute Cartesian coordinates of points P1, P2, P3 and P4
% Note that P3 is at the intesection of the normal through P1 and
% the rotational axis and P4 is at the intersection of the normal
% through P2 and the rotational axis.

X1 = nul*cos(latl)*cos(lonl);
Y1 = nul*cos(latl)*sin(lonl);
Z1 = nul*(1-e2)*sin(latl);

X2 = nu2*cos(lat2)*cos(lon2);
Y2 = nu2*cos(lat2)*sin(lon2);
Z2 = nu2*(1-e2)*sin(lat2);

X3 = 0;

Y3 = 0;

Z3 = -nul*e2*sin(latl);

X4 = 0;

Y4 = 0;

Z4 = -nu2*e2*sin(lat2);

% [3] Compute coordinate differences that are the components of the chord
% P1-P2

dX = X2 - X1;

dy = Y2 - Y1;

dz = 722 - 71;

% [4a] Compute the vector c in the direction of the chord between P1 and P2
ci = dX;

cj = dy;

ck = dz;

% [4b] Compute the chord distance and the unit vector c
chord = sqrt(ci*ci + cj*cj + ck*ck);

ci = ci/chord;
cj = cj/chord;
ck = ck/chord;

% [5] Compute the unit vector u in the direction of the normal through P1
ui = X1;

uj = Y1;

uk = Z1-7Z3;

norm = sgrt(ui*ui + uj*uj + uk*uk);

ui = ui/norm;

uj = uj/norm;

uk = uk/norm;

% [6] Set unit vector for the z-axis of ellipsoid
zi = 0;

zj = 0;

zk = 1;

% [7] Compute zenith distance of chord at P1 from dot product
zd = acos(ui*ci + uj*cj + uk*ck);

% [8] Compute unit vector e perpendicular to meridian plane using vector cross
% product e = (z x u)/cos(latl). e is in the direction of east.

ei = (zJ*uk - zk*uj)/cos(latl);
ej = -(zi*uk - zk*ui)/cos(latl);
ek = (zi*uj - zj*ui)/cos(latl);

% [9] Compute unit vector n in the meridian plane using vector cross
% product n = u x e. n is in the direction of north.
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ni = (uj*ek - uk*ej);
nj = -(ui*ek - uk*ei);
nk = (ui*ej - uj*ei);

% [10] Compute unit vector p perpendicular to normal section P1-P2 using
% vector cross product q = (u x c)/sin(zd)

pii = (uj*ck - uk*cj)/sin(zd);

pj = -(ui*ck - uk*ci)/sin(zd);

pk = (ui*cj - uj*ci)/sin(zd);

% [11] Compute unit vector g in the local horizon plane of P1 and in the
% direction of the normal section P1-P2 using vector cross product

% g=pXxXu

gi = (pj*uk - pk*uj);
g = -(pii*uk - pk*ui);
gk = (pii*uj - pj*ui);

% [12] Compute azimuth of normal section P1-P2-P3 using vector dot product
alpha = acos(ni*gi + nj*gj + nk*gk);
beta = acos(ei*gi + ej*gj + ek*gk);

if beta > pi/2

Az12 = 2*pi - alpha;
else

Az12 = alpha;
end

% [13] Compute unit vector w in direction of line P4-P1. w will lie in the
% meridian plane of P1.

wi = X1;

wj = Y1;

wk = Z1-74;

norm = sqrt(wi*wi + wj*wj + wk*wk);
wi = wi/norm;

wj = wj/norm;

wk = wk/norm;

% [14] Compute the angle gamma between unit vectors w and c using vector
% dot product gamma = acos(w . C)
gamma = acos(wi*ci + wj*cj + wk*ck);

% [15] Compute the angle delta between unit vectors w and u using vector
% dot product delta = acos(w . u)
delta = acos(wi*ui + wj*uj + wk*uk);

% [16] Compute unit vector g perpendicular to plane P2-P1-P4 using vector
% cross product g = (w x c)/sin(gamma)

gi = (wj*ck - wk*cj)/sin(gamma);
aj = -(wi*ck - wk*ci)/sin(gamma);
gk = (wi*cj - wj*ci)/sin(gamma);

% [17] Compute unit vector h in the direction of P2 and in the local horizon
% plane using vector cross product h = (g x u)/cos(delta)

hi = (qi*uk - gk*uj)/cos(delta);
hj = -(qi*uk - gk*ui)/cos(delta);
hk = (gi*uj - gj*ui)/cos(delta);

% [18] Compute azimuth of section P1-P2-P4 using vector dot product
alpha = acos(ni*hi + nj*hj + nk*hk);
beta = acos(ei*hi + ej*hj + ek*hk);
if beta > pi/2

Azdash12 = 2*pi - alpha;
else

Azdashl12 = alpha;
end

% [19] Compute angle between normal section planes at P1
epsilon = abs(Az12-Azdash12);
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% Compute normal section azimuth P2 to P1
numerator = dX*sin(lon2) - dY*cos(lon2);
denominator = dX*sin(lat2)*cos(lon2) + dY*sin(lat2)*sin(lon2) - dZ*cos(lat2);
Az21 = atan2(numerator,denominator);
if Az21 < 0
Az21 = 2*pi+Az21;
end

fprintf("\n////////////7/7//77/7/7/777/7/77/7/7/77777777);
fprintf("\n// Normal Section: Inverse Case //");
fprintf("\n////////////77/7//77/777//7/77/7/77777777);
fprintf("\n\nellipsoid parameters®);

fprintf("\na = %18.9f",a);
fprintf("\nf = 1/%16.12F",flat);
fprintf("\ne2 = %20.12e",e2);
fprintf("\nep2 = %20.12e",e2);

% Print lat and lon of Point 1
[D,M,S] = DMS(latl*d2r);
ifD==024&%& latl < 0
fprintf("\n\nLatitude P1
else
fprintf("\n\nLatitude P1
end
[D,M,S] = DMS(lonl1*d2r);
ifD==024&& lonl <O
fprintf("\nLongitude P1
else
fprintf("\nLongitude P1 = %4d %2d %9.6F (D M S)*,D,M,S);
end

-0 %2d %9.6F (D M S)",M,S);

%4d %2d %9.6F (D M S)",D,M,S);

-0 %2d %9.6F (D M S)",M,S);

% Print lat and lon of point 2
[D,M,S] = DMS(lat2*d2r);
ifD==024&& latl <0
fprintf(*\n\nLatitude P2
else
fprintf(*\n\nLatitude P2
end
[D,M,S] = DMS(lon2*d2r);
ifD==02&& lon2 <0
fprintf(*\nLongitude P2
else
fprintf("\nLongitude P2 = %4d %2d %9.6F (D M S)*,D,M,S);
end

-0 %2d %9.6F (D M S)",M,S);

%4d %2d %9.6F (D M S)*,D,M,S);

-0 %2d %9.6F (D M S)",M,S);

% Print Coordinate table

fprintf("\n\nCartesian coordinates”);

fprintf("\n X Y Z%);
fprintf("\nP1 %15.6F %15.6F %15.6F",X1,Y1,Z1);
fprintf("\nP2 %15.6F %15.6F %15.6F",X2,Y2,Z2);
fprintf("\nP3  %15.6F %15.6F %15.6F",X3,Y3,Z3);
fprintf("\nP4 %15.6F %15.6F %15.6F",X4,Y4,Z4);

fprintf("\ndX = %15.6F",dX);
fprintf("\ndY = %15.6F",dY);
fprintf("\ndZ = %15.6F",dz);

% Print chord distance 1-2
fprintf("\n\nChord distance P1-P2%);
fprintf("\nchord = %15.6Ff",chord);

% Print zenith distance of chord at point 1
fprintf("\n\nZenith distance of chord at P1%);
[D,M,S] = DMS(zd*d2r);

fprintf("\nzd = %3d %2d %9.6F (D M S)*,D,M,S);
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% Print azimuths of normal sections
fprintf("\n\nAzimuth of normal section P1-P2%);
[D,M,S] = DMS(Az12*d2r);

fprintf("\nAz12 = %3d %2d %9.6F (D M S)",D,M,S);

fprintf("\n\nAzimuth of normal section P2-P1%);
[D,M,S] = DMS(Az21*d2r);
fprintf("\nAz21 = %3d %2d %9.6Ff (D M S)*,D,M,S);

fprintf("\n\nAzimuth of normal section P2-P1 at P1%);
[D,M,S] = DMS(Azdash12*d2r);
fprintf("\nAz""12 = %3d %2d %9.6F (D M S)",D,M,S);

fprintf("\n\nAngle between normal sections at P1%);
[D,M,S] = DMS(epsilon*d2r);
fprintf("\nepsilon = %4d %2d %9.6F (D M S)",D,M,S);

% [20] Compute arc length of normal section using ROMBERG INTEGRATION
Ffprintf("\n\nROMBERG INTEGRATION TABLE");

% Compute constants of normal section curve P1-P2
ep = sqrt(ep2);
= ep*sin(latl);
= ep*cos(latl)*cos(Az12);

15;

zeros(m,m);
ish = 0;

k =1:m

int 27k ;

inc (zd-pion2)/int;

sum ;

for

= =3 TQ

in
or

o

pion2:inc:zd
g*cos(t)+h*sin(t);
h*cos(t)-g*sin(t);
-2*nul*cos(t);
1+X*X;
u/v;

2*nul*sin(t);
2*xX*y;
(v*du-u*dv)/(v*v);
y = sqrt(r*r + dr*dr);
sum = sum+2*y;

if t == pion2

first = y;

end

last = y;

cooao=< < XM I
=< Cc

end
sum = sum-First-last;
Integral = inc/2*sum;
S(k,1) = Integral;
fprintf("\n%d %15.6F",k,S(k,1));
for j = 2:k
S(k,J) = 1/(4"G-1)-D*(@ G -1)*S(K,J-1)-S(k-1,j-1));
fprintf(" %15.6F",S(K,j));
diff = abs(S(k,j-1)-S(k,j)):
if diff < le-6
finish = 1;
s = S(k,J);
break;
end
end
if finish ==
break;
end
end

% Print normal section distance P1-P2
fprintf("\n\nnormal section distance P1-P2%);
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fprintf("\ns = %15.6Ff",s);

fprintf("\n\n");

MATLAB function Cart2Geo.m

function [lat,lon,h] = Cart2Geo(a,flat,X,Y,2)

% [lat,lon,h] = Cart2Geo(a,flat,X,Y,2)

% Function computes the latitude (lat), longitude (lon) and height (h)
% of a point related to an ellipsoid defined by semi-major axis (@)

% and denominator of flattening (flat) given Cartesian coordinates

% X,Y,Z. Latitude and longitude are returned as radians.

% Function: Cart2Geo()

% Usage: [lat,lon,h] = Cart2Geo(a,flat,X,Y,Z2);

%

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 6 April 2006

% Version 1.1 20 August 2007

% Functions required:
% radii()

% Purpose:
% Function Cart2geo() will compute latitude, longitude
% (both in radians) and height of a point related to

% an ellipsoid defined by semi-major axis (a) and

% denominator of flattening (flat) given Cartesian coordinates
% X,Y,Z.

%

% Variables:

% a - semi-major axis of ellipsoid

% b - semi-minor axis of ellipsoid

% c - cos(psi)

% c3 - cos(psi) cubed

% e2 - 1st eccentricity squared

% ep2 - 2nd eccentricity squared

% f - Tlattening of ellipsoid

% flat - denominator of flattening f = 1/flat

% h - height above ellipsoid

% lat - latitude (radians)

% lon - longitude (radians)

% p - perpendicular distance from minor-axis of ellipsoid
% psi - parametric latitude (radians)

% rm - radius of curvature of meridian section of ellipsoid
% rp - radius of curvature of prime vertical section of ellipsoid
% S - sin(psi)

% s3 - sin(psi) cubed

%

% Remarks:

% This function uses Bowring"s method, see Ref [1].

% Bowring®"s method is also explained in Ref [2].

% References:
% [1] Bowring, B.R., 1976, "Transformation from spatial to

% geographical coordinates”™, Survey Review, Vol. XXIII,

% No. 181, pp. 323-327.

% [2] Gerdan, G.P. & Deakin, R.E., 1999, "Transforming Cartesian

% coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h®, The
% Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.
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% calculate flattening f and ellipsoid constants e2, ep2 and b

T = 1/flat;

e2 = f*(2-1);
ep2 = e2/(1-e2);
b =a*(1-f);

% compute 1st approximation of parametric latitude psi
p sgrt(X*X + Y*Y);
psi atan((Z/p)/(1-));

% compute latitude from Bowring"s equation

s = sin(psi);

s3 = s*s*s;

c = cos(psi);

c3 = c*c*c;

lat = atan((Z+b*ep2*s3)/(p-a*e2*c3));

% compute radii of curvature for the latitude
[rm,rp] = radii(a,flat,lat);

% compute longitude and height

lon = atan2(Y,X);
h = p/cos(lat) - rp;

function [D,M,S] = DMS(DecDeg)

% [D,M,S] = DMS(DecDeg) This function takes an angle in decimal degrees and returns

% Degrees, Minutes and Seconds

val = abs(DecDeg);
D = fix(val);
M = Ffix((val-D)*60);

S (val-D-M/60)*3600;
iT(DecDeg<0)
D = -D;
end
return

MATLAB function romberg.m

function s = romberg(a,f,latl,Az12,zd)

% s = romberg(a,f,lat,az,zd)

% This function cumputes the arc length of a normal section using Romberg

% Integration, a numerical integration technique using the trapezoidal rule
% and Richardson Extrapolation. The function requires ellipsoid parameters
% a (semi-major axis) and f (flattening of ellipsoid), latl (latitude of P1
% in radians), Az12 (azimuth of normal section plane P1-P2 in radians) and
% zd (zenith distance of the chord of the normal section arc P1-P2). The

% function returns the arc length s.

% Function: romberg

% Usage: s = romberg(a,f,latl,Az12,zd);

%

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 24 September 2009

%

% Purpose: This function cumputes the arc length of a normal section

% using Romberg Integration, a numerical integration technique using the
% trapezoidal rule and Richardson Extrapolation. The function requires

Normal Section.doc



% ellipsoid parameters a,f and latl (latitude of Pl in radians), Azl2
% (azimuth of normal section plane P1-P2 in radians) and zd (zenith

% distance of the chord of the normal section arc P1-P2).

% Functions required:

% Variables:

% Azl2 - azimuth of normal section P1-P2

% a - semi-major axis of spheroid

% chord - chord distance between P1 and P2

% d2r - degree to radian conversion factor 57.29577951. ..
% e2 - eccentricity of ellipsoid squared

% eps - 2nd-eccentricity squared

% F - f = 1/flat is the flattening of ellipsoid

% g,h - constants of normal section curve

% latl - latitude of P1 (radians)

% nul - radius of curvature in prime vertical plane at P1
% pion2 - pi/2

% S - array of normal section arc lengths

% s - arc length of normal section P1-P2

% s2 - sin-squared(latitude)

% zd - zenith distance of chord

% Remarks:

% References:

% [1] Deakin, R. E., (2009), "The Normal Section Curve on an Ellipsoid",
% Lecture Notes, School of Mathematical and Geospatial Sciences,
% RMIT University, November 2009.

% Degree to radian conversion factor
d2r = 180/pi;
pion2 = pi/2;

% Compute ellipsoid constants
e2 = f*(2-F);
ep2 = e2/(1-e2);

% Compute radius of curvature in the prime vertical plane at Pl
sin(latl)"2;
a/sqrt(l-e2*s2);

"
N
I

% Fprintf("\n\nROMBERG INTEGRATION TABLE");

% Compute constants of normal section curve P1-P2

ep = sqgrt(ep2);
g = ep*sin(latl);
h = ep*cos(latl)*cos(Az12);
% Set array of arc lengths
n = 15;
S = zeros(n,n);
finish = 0;
for k = 1:15
% set the number of intervals and the increment
int = 27°k;
inc = (zd-pion2)/int;
sum = 0;

% evaluate the integral using the Trapezoidal Rule

for t = pion2:inc:zd
X = g*cos(t)+h*sin(t);
y = h*cos(t)-g*sin(t);
u = -2*nul*cos(t);
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v = 1+X*X;

r = u/v;

du = 2*nul*sin(t);

dv = 2*x*y;

dr = (v*du-u*dv)/(v*v);

y = sqrt(r*r + dr*dr);
sum = sum+2*y;
if t == pion2
first = y;
end
last = y;
end
sum = sum-First-last;
Integral = inc/2*sum;
S(k,1) = Integral;
% fprintf("\n%d %15.6F",k,S(k,1));
% Use Richardson extrapolation

for j = 2:k
S(k.j) = 1/(4°G-1)-1)* (4 G-1)*S(k,j-1)-S(k-1,§-1));
% fprintf(" %15.6F",S(K,§));

diff = abs(S(k,j-1)-S(k,j));
if diff < le-6

finish = 1;
s = S(k.J):
break;
end
end
if finish == 1
break;
end

end
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APPENDIX 1: ROMBERG INTEGRATION

Romberg integration (Romberg 1955) is a numerical technique for evaluating a definite
integral and discussions of the technique can be found in most textbooks on numerical
analysis; e.g. Williams (1972). A concise treatment of the technique and a study of the
historical development of methods of integration (quadrature) can be found in Dutka
(1984). A development of Romberg's method — and the extrapolation formula that is at
the heart of it — is given below and is followed by a MATLAB function that demonstrates
the use of the technique.

Romberg integration is a method for estimating the numerical value of the definite integral

I= f f(z)de (54)

It is based on the trapezoidal rule — the simplest of the Newton-Cotes integration formula

for equally spaced data on the interval a,b

b

I:ff(:c)da::g(fo +2f +2f ++2f  +f)+HE (55)

a

f@ 4

ke
where
n is the number of intervals of width A,
h—
n

a . . . .
is the common interval width or spacing,

B =

Jos £ £+ are values of the function evaluated at = =|a, a +h, a +2h, ... |,

FE is the error term

When the function f (x) has continuous derivatives the error term F can be expressed as a

convergent power series and we may write

I_ff f +2f +2f, +--+2f 1+j;,)+E:T+f:ajh“ (56)

where a; are coefficients.
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As the error term FE is a convergent power series in h a technique known as Richardson

extrapolation” may be employed to improve the accuracy of the result.
Richardson extrapolation can be explained as follows.

Let the value of n be a power of 2; say 2" i.e., the number of intervals n = 2,4,8,16,...,2"

Denote an evaluation of the integral I given by equation (56) as

S, =T+> ah® =T+ah’+ah' +ah’+-- (57)

j=1

If the interval width is halved, then

1

2
= (p , 1
Sk+1,1:T+ZaJ[§] =T+a12—2h +a
=1

oy

1

4 [§

h +a32—6h + - (58)
The first term of the error series can be eliminated by taking suitable combinations of
equations (57) and (58); i.e., multiplying equation (58) by 4 and then subtracting equation

(57) will eliminate the first term of the error series

4h* 4h5
A5, =5, =4T =T +q, 2—4—h4 +a, Q—e—hﬁ 1.
< (apr
j=2

and

T — k+1,1 kl 2
3 Z 3

48 S a4
T s (59)
e 2%

The first term on the right-hand-side of equation (59) will be designated
45 =S

k41,1 k1
S =T 5

k2 3

and the leading error term is now of order h’.

' A technique named after Lewis Fry Richardson (1881-1953) a British applied mathematician, physicist,
meteorologist, psychologist and pacifist who developed the numerical methods used in weather forecasting
and also applied his mathematical techniques to the analysis of the causes and prevention of wars. He was
also a pioneer in the study of fractals. Richardson extrapolation is also known as Richardson's deferred

approach to the limit.
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Successive halvings of the interval will give a sequence of values S, ,5, ,5,,...,5,, and

each successive pair (Sm,52’1),(5271,83’1),... can be combined to give values 5272,8372,...; and

this next sequence can be combined in a similar manner to remove the leading error term

of order A'; and so on.
By using the formula

k=1234,...
j=234,5,...

1
T

(Mﬂgﬂ—smfj (60)

the process of Richardson extrapolation leads to a triangular sequence of columns with

error terms of increasing order.

—_
\V]
w
=~

16
32

3.1 32 S 3,3

W
AW N e |
n
n

95}
n
N
N

41 42 4,3 44

error term hz h4 h6 hs

The entries S, , in the second column have eliminated the terms involving h*, the entries

in the third column have eliminated the terms involving k', etc, and as the interval

2j
b— o . b— _
h = Q—ka the error term of the approximation Sk_j is of the order [ a] with each

successive value in a particular row converging more rapidly to the true value of the

integral.

Testing between particular values will determine when the process has converged to a

suitable result.
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MATLAB FUNCTION romberg test.m

This function uses Romberg Integration for the calculation of the integral f sec(x) dz
This integral has the known result f sec(x)dx = In|(tan g—i—%

MATLAB function romberg test.m

function romberg_test

% This function computes the numerical value of the integral of sec(x)

% which is known to equal In[tan(x/2+pi/4)].

% For x = 45 degrees the integral sec(x) = 0.881373587020.

% An integration table is produced that shows the convergence to the true
% value of the integral.

% Function: romberg_test

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 09 December 2009

%

% Purpose: This function computes the numerical value of the integral of

% sec(x) which is known to equal In[tan(xX/2+pi/4)].

% For x = 45 degrees the integral sec(x) = 0.881373587.

% An integration table is produced that shows the convergence to the true
% value of the integral.

% Variables:

% diff - difference between successive approximations of the integral
% d2r - degree to radian conversion factor 57.29577951. ..
% First - First value of f(X)

% Fx - value of f(X)

% h - interval width

% Integral - numerical value of integral from trapezoidal rule
% K,j - integer counters

% last - last value of f(X)

% m - maximum number of intervals

% n - number of intervals

% S - array of integral values

% sum - sum of function values

% X - the variable

% References:
% Williams, P. W., (1972), "Numerical Computation', Nelson, London.

% Degree to radian conversion factor
d2r = 180/pi;

fprintf("\n\nRomberg Integration Table for the integral of sec(x) for x = 45 degrees”);

% Set array of values S(k,j)

m = 15;

S = zeros(m,m);
finish = 0O;
for k = 1:m

% set the number of intervals and the increment
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end
fprintf("\n\n~");

n 27k ;
h 45/n;
sum = 0;

% evaluate the integral using the Trapezoidal Rule

for x = 0:h:45
x = 1/cos(x/d2r);
sum = sum+2*fx;

if x ==

first = fx;
end
last = fx;

end

sum = sum-first-last;
Integral = h/d2r/2*sum;
S(k,1) = Integral;

fprintf(\n%d %15.12F",k,S(k,1));

% Use Richardson extrapolation

for j = 2:k

S(k,J) = 1/(4"(-1)-1)*(4"(-1)*S(k,J-1)-S(k-1,3-1));

fprintf(" %15.12F,S(k,j));

diff = abs(S(k,j-1)-S(k,i));

if diff < le-12
finish = 1;
break;
end
end
if finish == 1
break;
end

MATLAB Command Window

>> help romberg_test

This function cumputes the numerical value of the integral of sec(x)
which is known to equal In[tan(x/2+pi/4)].-
r x = 45 degrees the integral sec(x) = 0.881373587020.

An integration table is produced that shows the convergence to the true
value of the integral.

Fo

>> romberg_test

R
1
2
3
4
5
6

>>

cNeoNoNoNoNe]

-899084147577

.885885914440 0.881486503395
.882507477613 0.881381332003
.881657432521 0.881374084157
.881444571861 0.881373618307
-881391334699 0.881373588978
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0.881374320577
0.881373600967
0.881373587251
0.881373587023

omberg Integration Table for the integral of sec(x) for x = 45 degrees

0.881373589544
0.881373587033 0.881373587023
0.881373587020 0.881373587020
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The output from the function Romberg test.m that is evaluating the integral

I = T:f? sec(x) dx

x=0°

is shown in the Romberg Integration Table and the elements are obtained as follows:

e For k=1, there are n = 2" =2 intervals (or strips) of width h where

h = b;a _A 0 22.50° and the integral I ~ g(fo +2f + j;) The function
f(a:) =secr = evaluated at x = 0°,22.5°,45° gives
COS T
h=1
J. = 1.082392200
J, = 1.414213562
and
225
S, =1= T[@ (1+2(1.082392200) + 1.414213562) = 0.899084148

e For k=2, there are n = 2" = 4 intervals (or strips) of width h where

_b—a 45 -0O°

h =11.25° and the integral [ ~ g(f;) +2f +2f, + f4) The function
n
f(ac) =secx = evaluated at =z = 0°,11.25°,22.5°,33.75°,45° gives
COS T
h=1
f =1.019591158
£, = 1.082392200
£, =1.202689774
f, = 1.414213562
and
11.25( =«
§ =I=—221" (1 +2(1.019...) +2(1.082...) + 2(1.202..) + 1.414...) — (.885885914
e 2 180

The element S, is obtained from equation (60)

5, =— (48, - 8,,) = l(4 x 0.885885914 — 0.899084148 ) = 0.881486503
, 4' 1 2,1 11 3
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e For k=3, there are n = 2" = 8 intervals (or strips) of width h = 5.625° and the

evaluated

integral I’:ﬁ(fo +2f +2f +--+2f —I—fs) The function f(x):seca::
2 CoS T

at = = 0°,5.625°,11.25°,...,39.375°,45° gives

f=1
f, = 1.004838572
f, =1.019591158

f, =1.293643567
f, = 1.414213562

and

. 5'225[ ”0 (14 2(1.004..) 4+ +2(1.293...) + 1.414....) = 0.882507478

The elements S,, and S, are obtained from equation (60)

5, =— (4'S,,~5,,) = l(4 x 0.882507478 — 0.885885914) = 0.881381333
5 4 _1 » ) 3
1 /., 1
Sy, = ) (4 53’2 — 52’2) = B(IG x 0.881381333 — 0.881486503) = 0.8813374322

And so on for increasing values of k

Testing between successive values Skijf and Skij can be used to determine when the

1

iterative procedure is terminated.
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THE CURVE OF ALIGNMENT
ON AN ELLIPSOID

R. E. Deakin
School of Mathematical & Geospatial Sciences, RMIT University,
GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA
email: rod.deakin@rmit.edu.au

December 2009

ABSTRACT

These notes provide a detailed derivation of the equation for the curve of alignment on an
ellipsoid. Using this equation and knowing the terminal points of the curve, a technique is
developed for computing the location of points along the curve. A MATLAB function is
provided that demonstrates the algorithm developed.

INTRODUCTION

In geodesy, the curve of alignment between P and P, on the ellipsoid is the locus of a

point P on the surface that moves so that a normal section plane at P contains the

terminal points P and P,.

/ ellipsoid

-
e
P
s
e
P

T equator

Figure 1: Curve of alignment on ellipsoid
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Figure 1 shows P on the curve of alignment between P, and P,. The normal to the

ellipsoid at P intersects the z-axis of the ellipsoid at H, and is contained in the plane
PPPH,. This normal section plane cuts the ellipsoid along the normal section curve
PPP,. As Pmoves from P, to P, — maintaining the condition that a normal section

plane contains P, and P, — it traces out the curve of alignment. This is a curve on the

surface having both curvature and torsion, i.e., it twists across the surface between P, and
P, . Note that in Figure 1, the normal at P intersects the z-axis at H and is not

contained in the plane PPP H,, unless Pis at P,.

The curve of alignment can also be described physically in the following way. Imagine a
theodolite, in adjustment, that is setup on the surface of the ellipsoid somewhere between
P and P,, and whose vertical axis is coincident with the ellipsoid normal. The theodolite
is pointed to the backsight P and the horizontal circle is clamped; then the telescope is
rotated in the vertical plane and pointed towards the forsight P,. Unless there is some
fluke of positioning, it is unlikely that the theodolite cross-hairs will bisect the target P,.
So the theodolite is repositioned by moving appropriate amounts perpendicular to the line
until the vertical plane of the theodolite at P contains both the backsight P, and the
forsight P,. A peg is place on the surface at this point. This process of “jiggling in” or
“middling in” between P and P, is repeated a short distance further along the line and

another peg placed. After the last peg has been placed the curve of alignment is now

defined by the pegged line on the surface.

The curve of alignment follows a path very similar to that of the geodesic and it is slightly
longer; although the difference is practicably negligible at distances less than 5,000 km.
This will be demonstrated below using equations developed by Clarke (1880) and Bowring
(1972).

The equation for the curve developed below is similar to that derived by Thomas (1952)
although the method of development is different; and it is not in a form suitable for
computing the distance or azimuth of the curve. But, as it contains functions of both the
latitude and longitude of a point on the curve, it is suitable for computing the latitude of a
point (by iteration) given a certain longitude. Alternatively, by choosing suitable
functions of given latitude, the longitude of a point on the curve can be computed directly

(by solving a trigonometric equation).
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EQUATION OF CURVE OF ALIGNMENT

normal section curve

)
Yy
21

Figure 2: Normal section plane containing P and P,

Figure 2 shows a normal section plane of P on an ellipsoid that passes through P and P,.
The semi-axes of the ellipsoid are a and b (a > b) and the first-eccentricity squared e*,

second-eccentricity squared e’ and the flattening f of the ellipsoid are defined by

Parallels of latitude ¢ and meridians of longitude A have their respective reference planes;
the equator and the Greenwich meridian, and Longitudes are measured 0° to £180° (east
positive, west negative) from the Greenwich meridian and latitudes are measured 0° to
+90° (north positive, south negative) from the equator. The z,y,2z geocentric Cartesian
coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the
minor axis (axis of revolution). The zOz plane is the Greenwich meridian plane (the origin
of longitudes) and the xOy plane is the equatorial plane. The positive z-axis passes

through the intersection of the Greenwich meridian and the equator, the positive y-axis is
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advanced 90° east along the equator and the positive z-axis passes through the north pole

of the ellipsoid.

The normal section plane in Figure 2 is defined by points ©, @ and ® that are P,

H respectively where H is at the intersection of the normal through P and the z-axis.

Cartesian coordinates of ® and @ are computed from the following equations

T = I/ COS ) COS A
Yy = v cos ¢sin \
z= V(l—e2)sin¢
where v = PH is the radius of curvature in the prime vertical plane and
a

J1—e’*sin® ¢

The distance OH = ve*sin¢ and the Cartesian coordinates of point @ are

UV =

T, 0
Yy | = 0
z,| |-ve’sing

The General equation of a plane may be written as

Arx+By+Cz+D =0

P and

(5)

And the equation of the plane passing through points ®, @ and @ is given in the form of

a 3rd-order determinant

-z, Y-y, z—2
T, =z Y, =y 2z —%|=0

Ty =Xy Yy =Y, 23— %

or expanded into 2nd-order determinants

(2—=,)-
Expanding the determinants in equation (7) gives

(:E _xl){(% B y1)<z3 _Z2) B (Z2 B z1>(y3 —y2>}
(v =w )l )5 —2) = (2= 2) (5, -2}
e =a)ilm =) —w) = (5 —w)(z -2}

Y=Y 2%

Yy =Yy 23— %

T, =, 22_Zl(y_y1>+$2_$1 Yy — Y
Ty =Ty Yy =Y,

Ly — T, 23— %

=0
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0 and equation (8) becomes

(- 1)( —yl)( a)-(e-a)(z - 2)(-w)
~(y =)o =)z 2 (=) (2 - 2) ()
He=a)lm —a)w) +lz=2)-n)(-w)=0 ©)

Expanding and simplifying equation (9) gives

Now from equation (4) =,

H

‘Q

Lz (yQ - y1> + :L’(y122 B yQZl> + 2 (:1:2y1 B x1y2>
+ yz, (Il - wQ) +uy (I221 — a:lz2) +z (x1y2 — xgyl) =0 (10)
Now from equations (2) and (4) z = vcos¢pcos A, y =vcospsin\,z = V(l - eQ)Siruﬁ and

z, = —ve’ sin ¢ , and substituting these into equation (10) gives

ve’ {({B2 — a:l)sin)\ — (y2 — yl)cos )\}sin ¢ — (y221 — yle)cos A
—|—<x221 — xle)sin)\ — <x2y1 — xlyQ)tanqﬁ =0

that is equivalent to

V(l—eQ){e2 (y2 — yl)cosA —é <x2 — :cl)sin)\}simb — (1—62>(y1z2 —y2zl)cos)\
—(1 —62)<I122 —x2z1>sin/\ —(1—62)($1y2 — x2y1>tanq5 =0

or, following Thomas (1952, p. 67, eq. 183); the equation of the curve of alignment is

V(l—eQ){Ccos)\—Hsin)\}sinqb—Ucos)\—VsinA—W(l—ez)tangb =0 (11)

where

c U=(1-¢)(vzs-uz) W=1y -y,
H=¢ (a; — :r1> V = (1 — 62><I221 — x1z2) (12)

Equation (11) is not suitable for computing the distance along a curve of alignment, nor is
it suitable for computing the azimuth of the curve, but by certain re-arrangements it is
possible to solve (iteratively) for the latitude of a point on the curve given a longitude
somewhere between the longitudes of the terminal points of the curve. Or alternatively,
solve (a trigonometric equation) for the longitude of a point given a latitude somewhere

between the latitudes of the terminal points.
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SOLVING FOR THE LATITUDE

Equation (11) can be re-arranged as

Avsing — Btan¢g — D =0 (13)

where A and D are functions of longitude alone and B is a constant for the curve, and
A= <1—62)(CCOS>\ - Hsin)\); B = W<1—62); D =UcosA+VsinA (14)

C, H, U, V and W are constants for the particular curve and are given by equation (12).

v is a function of the latitude of P on the curve and is given by equation (3).

The latitude ¢ can be evaluated using Newton-Raphson iteration for the real roots of the

equation f(¢)= 0 given in the form of an iterative equation
g

f\e,
¢(7z+1) - ¢(n) B M (15)
(o)
where n denotes the n™ iteration and f (¢> is given by equation (13) as
f(¢) = Avsing — Btang — D (16)
and the derivative f’(qﬁ) = %{f <¢)} is given by
f’(qb):Z—;Asin¢+yAcos¢—Bse(:2¢ (17)

where, from equation (3)

dv v*?

— = —¢’sin¢cos 18
= g oso (19
An initial value of gzbm (¢ for n =1) can be taken as the latitude of P and the functions

o) ana 1'(s,

can now be computed from equation (15) and this process repeated to obtain values

evaluated from equations (16) and (17) using ¢, . gzb(g) (¢ for n=2)

¢(3>,q§( g This iterative process can be concluded when the difference between qﬁ(nﬂ) and

qb(n) reaches an acceptably small value.
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SOLVING FOR THE LONGITUDE

Equation (11) can also be re-arranged as

PcosA—Qsin\ =S (19)
where P, () and S are functions of latitude alone and
fnzcy@—eﬂﬂn¢—Ug Q::Hy@—eﬂﬁn¢+vy S:LV@—eﬂmm¢ (20)

C, H, U, V and W are constants for the particular curve and are given by equation (12).

v is a function of the latitude of P on the curve and is given by equation (3).
The longitude can be evaluated using Newton-Raphson iteration where

ARS
b

o)

and

f(A) = PcosA—QsinA—§
f’(A) = —Psin A\ — Qcos\

An initial value of )\( ) (A for n =1) can be taken as the longitude of P,.

Alternatively, the longitude can be evaluated by a trigonometric equation derived as

follows. Equation (19) can be expressed as a trigonometric addition of the form

S = Rcos()\ - 0)
= RcosAcosf + Rsin Asin 6

Now, equating the coefficients of cosA and sin A in equations (19) and (23) gives
P =Rcost; Q= —Rsinf
and using these relationships

R=\P +Q’; taan%

Substituting these results into equation (23) gives

A= arccos[

Ll + arctan {ﬁ}

Curve of Alignment.doc

(22)

(23)

(24)

(25)

(26)




DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND CURVE OF ALIGNMENT

There are five curves of interest in geodesy; the geodesic, the normal section, the great

elliptic arc the loxodrome and the curve of alisnment.

The geodesic between P, and P, on an ellipsoid is the unique curve on the surface defining

the shortest distance; all other curves will be longer in length. The normal section curve

PP, is a plane curve created by the intersection of the normal section plane containing the

normal at P, and also P, with the ellipsoid surface. And as we have shown (Deakin 2009)

2

there is the other normal section curve P,P,. The curve of alignment is the locus of all
points P such that the normal section plane at P also contains the points P and P,. The
curve of alignment is very close to a geodesic. The great elliptic arc is the plane curve
created by intersecting the plane containing P, P, and the centre O with the surface of
the ellipsoid and the loxodrome is the curve on the surface that cuts each meridian

between P and P, at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal
section curve and the curve of alignment were developed by Clarke (1880, p. 133) and
Bowring (1972, p. 283) developed an approximate equation for the difference between the
geodesic and the great elliptic arc. Following Bowring (1972), let

s = geodesic length

L = normal section length

D = great elliptic length

S = curve of alignment length

then
4 4
I e ) 4 ) 2
—s _%5 I cos” ¢, sin” ay, cos” ay, + -+
4 2
D—s :;—45[%] sin® ¢, cos” ¢, sin” ar, + -+ (27)
4 4
g . e S 4 ) 2
-5 —%S[E] cos” ¢, sin” o, cos” a, + -+

where R can be taken as the radius of curvature in the prime vertical at P . Now for a

given value of s, § —s will be a maximum if ¢, = 0° (P, on the equator) and o, = 45" in

1
: 4 <2 2
which case cos” ¢, sin” o, cos” ), = 1 thus
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4 4
(S - s) <2 5|2 (28)
1440 | R
For the GRS80 ellipsoid where f = 1/298.257222101, 2 = f(2 - f), and for s = 2000000 m
(2,000 km) and R = 6371000 m , equation (28) gives S —s < 0.001 m.

MATLAB FUNCTIONS

Two MATLAB functions are shown below; they are: curve of alignment lat.m and
curve_of alignment lon.m Assuming that the terminal points of the curve are known,
the first function computes the latitude of a point on the curve given a longitude and the

second function computes the longitude of a point given the latitude.

Output from the two functions is shown below for points on a curve of alignment between
the terminal points of the straight-line section of the Victorian-New South Wales border.
This straight-line section of the border, between Murray Spring and Wauka 1978, is known
as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border
line in 1870-71. Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast
at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of
the Murray River that is closest to Cape Howe. The straight line is a normal section curve
on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the
normal to the ellipsoid at Murray Spring. The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ —37°47/49.2232" )\ 148°11'48.3333"
Wauka 1978: ¢ —37°3018.0674" )\ 149°58'32.9932"

The normal section azimuth and distance are:

116° 58'14.173757"  176495.243760 m

The geodesic azimuth and distance are:

116°58'14.219146"”  176495.243758 m

Figure 3 shows a schematic view of the Black-Allan line (normal section) and the geodesic
and curve of alignment. The relationships between these two curves and the normal
section have been computed at seven locations along the line (A, B, C, etc.) where

meridians of longitude at 0°15" intervals cut the line. The relationships are shown in

Table 1.
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BLACK-ALLAN LINE:

148°15"

148°30

148°45"

149°00"

Murray Spring

Geodesic

VIC

149°15°

Curve of ///////i

NS W

149°30"

Alignment

The geodesic and the Curve of Alignment are shown plotted at an
(normal section).
At longitude 149°00’E. the Geodesic is 0.016 m south of the Border

exaggerated scale with respect to the Border Line

Line and the Curve of Alignment is 0.015 m south.

At longitude 149°30’E. the Geodesic is 0.015 m south of the Border

Line and the Curve of Alignment is 0.019 m south.

BLACK-ALLAN LINE:

VICTORIA/NSW

BORDER

149°45"

Figure 3

The Black-Allan Line is a normal section curve
on the reference ellipsoid between P1 (Murray
Spring) and P2 (Wauka 1978) . This curve is the
intersection of the normal section plane and the
ellipsoid, and the normal section contains PI1,
the normal to the ellipsoid at P1l, and P2.

The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ -37°47749.2232"
Wauka 1978: ¢ -37°30718.0674"

A 148°11748.3333”
A 149°58732.9932”

The normal section azimuth and distance are:
116°58714.173757” 176495.243760 m.

Normal Section

Wauka 1978

VICTORIA/NSW BORDER

NAME GDA94 Ellipsoid values
LATITUDE LONGITUDE do P dm = pxdg
Murray | _36°47-49.223200" 148°11°48.333300"
Spring
-36°49°07.598047" N
A -36°49°07.598090" G 148°15°00.000000” | -00°00.000043" 6358356.102 -0.0013
-36°49°07.598051" CoA -00°00.000004" -0.0001
-36°55713.876510" N
B -36°55713.876745" G 148°30°00.000000” | -00°00.000235" 6358465.209 -0.0072
-36°55713.876614" CoA -00°00.000104" .-0.0032
-37°01°17.289080" N
C -37°01°17.289478" G 148°45°00.000000” | -00°00.000398" 6358573.577 -0.0123
-37°01°17.289366" CoA -00°00.000286" -0.0088
-37°07°17.845554" N
D -37°07°17.846060" G 149°00°00.000000” | -00°00.000506" 6358681.204 -0.0156
-37°07°17.846030" CoA -00°00.000476" -0.0147
-37°13715.555723” N
E -37°13715.556262" G 149°15°00.000000” | -00°00.000539" 6358788.089 -0.01l66
-37°13715.556326" CoA -00°00.000603" -0.0186
-37°19°10.429372" N
F -37°19°10.429845" G 149°30°00.000000” | -00°00.000473" 6358894.232 -0.0146
-37°19°10.429972" CoA -00°00.000600" -0.0185
-37°25702.476276" N
G -37°25702.476564" G 149°45°00.000000” | -00°00.000288" 6358999.632 -0.0089
-37°25°02.476677" CoA -00°00.000401" -0.0124
Wauka | _37930°18.067400" 149°58°32.993200"
1978
TABLE 1: Points where curves cut meridians of A, B, C, etc at 0°15° intervals of longitude along

Border Line

N = Normal Section, G = Geodesic, CoA
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>> curve of alignment lat

Curve of Alignment

Ellipsoid parameters
a = 6378137.0000
f 1/298.257222101

Terminal points of curve

Latitude Pl = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M 9)

Cartesian coordinates

X Y Z
Pl -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252

Given longitude of P3

Longitude P3 = 149 30 0.000000 (D M S)

Latitude of P3 computed from Newton-Raphson iteration
Latitude P3 = -37 19 10.429972 (D M S)

iterations = 4

>>

>> curve of alignment lon

Curve of Alignment

Ellipsoid parameters
a = 6378137.0000
f 1/298.257222101

Terminal points of curve

Latitude Pl = =36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = =37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M S)

Cartesian coordinates

X Y Z
Pl -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252

Given latitude of P3
Latitude P3 = =37 19 10.429972 (D M S)

Longitude of P3 computed from Newton-Raphson iteration
Longitude P3 = 149 29 60.000000 (D M S)
iterations 5

Longitude of P3 computed from trigonometric equation

Longitude P3 = 149 29 60.000000 (D M S)
theta P3 = 8 32 44.447661 (D M 9)
>>
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MATLAB function curve_of alignment lat.m

function curve of alignment lat

% curve of alignment lat: Given the terminal points Pl and P2 of a curve of
% alignment on an ellipsoid, and the longitude of a point P3 on the curve,
% this function computes the latitude of P3.

% Function: curve of alignment lat

% Usage: curve of alignment lat

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 3 October 2009

% Version 1.1 31 December 2009

% Purpose: Given the terminal points Pl and P2 of a curve of alignment on

% an ellipsoid, and the longitude of a point P3 on the curve, this
% function computes the latitude of P3.

% Functions required:

% [D,M,S] = DMS (DecDeq)
% [X,Y,Z2] = Geo2Cart(a,flat,lat,lon,h)
% [rm, rp] = radii(a,flat,lat);

% Variables:

% A,D - curve of alignment functions of longitude

% a - semi-major axis of ellipsoid

$ Db - semi-minor axis of ellipsoid

$ B,C,H,W,U,V - constants of curve of alignment

% d2r - degree to radian conversion factor 57.29577951...
% d nu - derivative of nu w.r.t latitude

s ez - eccentricity of ellipsoid squared

s £ - f = 1/flat is the flattening of ellipsoid

s flat - denominator of flattening of ellipsoid

s £ lat3 - function of latitude of P3

% fdash lat3 - derivative of function of latitude of P3

% hl,h2 - ellipsoidal heights of Pl and P2 (Note: hl = h2 = 0)
% iter - number of iterations

% latl,lat2,lat3 - latitude of P1l, P1l, P3 (radians)
% lonl,lon2,lon3 - longitude of P1l, P2, P3 (radians)

% new lat3 - next latiude in Newton-Raphson iteration

% nu - radius of curvature in prime vertical plane
% rho - radius of curvature in meridain plane

$ X1,Y1,7z1 - Cartesian coordinates of P1

S X2,Y2,722 - Cartesian coordinates of P2

% Remarks:

% Given the terminal points Pl and P2 of a curve of alignment on an

% ellipsoid, and the longitude of a point P3 on the curve, this function
% computes the latitude of P3.

% References:
% [1] Deakin, R.E., 2009, 'The Curve of Alignment on an Ellipsoid',

% Lecture Notes, School of Mathematical and Geospatial Sciences,
% RMIT University, December 2009

% [2] Thomas, P.D., 1952, Conformal Projections in Geodesy and

% Cartography, Special Publication No. 251, Coast and Geodetic
% Survey, U.S. Department of Commerce, Washington, DC: U.S.

% Government Printing Office, pp. 66-67.

oe

Degree to radian conversion factor
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d2r = 180/pi;

% Set ellipsoid parameters
= 6378137; % GRS80
lat = 298.257222101;

Hh

o

Compute ellipsoid constants
1/flat;
= £*(2-f);

.
Il

% Set lat, lon and height of Pl and P2 on ellipsoid
latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring

)
lonl = (148 + 11/60 + 48.3333/3600)/d2r;
lat2 = -(37 + 30/60 + 18.0674/3600) /d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600) /d2r;
hl = 0;
h2 = 0;

Compute Cartesian coords of Pl and P2
X1,Y1,21] = Geoz2Cart(a,flat,latl,lonl,hl);
X2,Y¥2,722] = Geo2Cart(a,flat,lat2,lon2,h2);

— — o°

Compute constants of Curve of Alignment
e2*(Y2-Y1);

= e2* (X2-X1);

X1*Y2-X2*Y1;

(1-e2) *(Y1*Z22-Y2*Z1) ;
(1-e2) * (X2*Z21-X1*Z22) ;

= (l-e2)*W;

w<<a=imQoe
I

% Set longitude of P3
lon3 = (149 + 30/60)/d2r;

% Set constants A and D that are functions of longitude only
A = (l-e2)*(C*cos(lon3)-H*sin (lon3));
D

= U*cos (lon3)+V*sin(lon3);

% Set starting value of phi = latitude
lat3 = latl;

iter = 1;
while 1
% Compute radii of curvature
[rho, nu] = radii(a, flat,lat3);
d nu = nu”3/ (a*a)*e2*sin(lat3) *cos (lat3);
f lat3 = A*nu*sin(lat3)-B*tan(lat3)-D;
fdash lat3 = d_nu*A*sin(lat3)+nu*A*cos(lat3)—B/(cos(lat3)A2);
new lat3 = lat3—(f_lat3/fdash_lat3);
if abs(new lat3 - lat3) < le-15
break;
end

lat3 = new lat3;
if iter > 100
fprintf ('Iteration for latitude failed to converge after 100 iterations');
break;
end
iter = iter + 1;
end;

fprintf ('\n ") ;
fprintf ('\nCurve of Alignment');
fprintf ("\n ')
fprintf ('\nEllipsoid parameters');
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fprintf ('\na
fprintf ('\nf

%12.4f',a);
1/%13.9f',flat);

fprintf ('\n\nTerminal points of curve');
% Print lat and lon of Pl

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < O

fprintf ('\nLatitude Pl = -0 %2d %9.06f (D M S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (D M S)',D,M,S);
end

[D,M,S] = DMS(lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end
% Print lat and lon of P2

[D,M,S] = DMS (lat2*d2r);
if D == 0 && lat2 < O

fprintf ('\n\nLatitude P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end

[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < 0

fprintf ('\nLongitude P2 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLongitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end

)

% Print Coordinate table

fprintf ('\n\nCartesian coordinates"');

fprintf ('\n X Y VAR
fprintf ('\nP1 %$15.6f %$15.6f %$15.6f',X1,Y1,21);

fprintf ('\nP2 $15.6f %15.6f %$15.6f',X2,Y2,72);

% Print lat and lon of P3
fprintf ('\n\nGiven longitude of P3');

[D,M,S] = DMS (lon3*d2r);
if D == 0 && 1lon3 < 0

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf ('"\n\nLatitude of P3 computed from Newton-Raphson iteration');
[D,M,S] = DMS (lat3*d2r);
if D == 0 && lat3 < 0

fprintf ('\nLatitude P3 = -0 %$2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf ('\niterations = %44',iter);

fprintf ("\n\n");
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MATLAB function curve_of alignment lon.m

function curve of alignment lon

curve of alignment lon: Given the terminal points Pl and P2 of a curve of
alignment on an ellipsoid, and the latitude of a point P3 on the curve,
this function computes the longitude of P3.

Function: curve of alignment lon
Usage: curve of alignment lon
Author: R.E.Deakin,

School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

email: rod.deakin@rmit.edu.au

Version 1.0 31 December 2009

Purpose: Given the terminal points Pl and P2 of a curve of alignment on
an ellipsoid, and the latitude of a point P3 on the curve, this function
computes the longitude of P3.

Functions required:
[D,M,S] = DMS (DecDbeg)

[X,Y,Z2] = Geo2Cart(a,flat,lat,lon,h)
[rm, rp] = radii(a,flat,lat);
Variables:
a - semi-major axis of ellipsoid
b - semi-minor axis of ellipsoid
C,H,W,U,V - constants of curve of alignment
d2r - degree to radian conversion factor 57.29577951...
d nu - derivative of nu w.r.t latitude
e2 - eccentricity of ellipsoid squared
£ - f = 1/flat is the flattening of ellipsoid
flat - denominator of flattening of ellipsoid
f lon3 - function of longitude of P3
fdash lon3 - derivative of function of longitude of P3
hl,h2 - ellipsoidal heights of Pl and P2 (Note: hl = h2 = 0)
iter - number of iterations
lambda - longitude of P3 computed from trigonometric equation

latl, lat2,1lat3 - latitude of P1l, P1l, P3 (radians)
lonl,lon2,lon3 - longitude of P1, P2, P3 (radians)

new_lon3 - next longitude in Newton-Raphson iteration

nu - radius of curvature in prime vertical plane
P,Q,S - functions of latitude of a point on the curve of

- alignment

rho - radius of curvature in meridain plane

theta - auxiliary angle in the computation of lambda
X1,Y1,71 - Cartesian coordinates of P1

X2,Y2,722 - Cartesian coordinates of P2
Remarks:

Given the terminal points Pl and P2 of a curve of alignment on an
ellipsoid, and the latitude of a point P3 on the curve, this function
computes the longitude of P3.

References:

[1] Deakin, R.E., 2009, 'The Curve of Alignment on an Ellipsoid',
Lecture Notes, School of Mathematical and Geospatial Sciences,
RMIT University, December 2009

[2] Thomas, P.D., 1952, Conformal Projections in Geodesy and
Cartography, Special Publication No. 251, Coast and Geodetic
Survey, U.S. Department of Commerce, Washington, DC: U.S.
Government Printing Office, pp. 66-67.
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)

% Degree to radian conversion factor
d2r = 180/pi;

% Set ellipsoid parameters

a = 6378137; % GRS80
flat = 298.257222101;

oe

Compute ellipsoid constants
f = 1/flat;
e2 = f*(2-f);

% Set lat, lon and height of Pl and P2 on ellipsoid

latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring
lonl = (148 + 11/60 + 48.3333/3600) /d2r;

lat2 = - (3 + 30/60 + 18.0674/3600) /d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600) /d2r;

hl = 0;

h2 = 0;

% Compute Cartesian coords of Pl and P2
[X1,Y1,21] = Geo2Cart(a,flat,latl,lonl,hl);

[X2,Y2,22] = Geo2Cart(a,flat,lat2,lon2,h2);
% Compute constants of Curve of Alignment
C = e2*(Y2-Y1);

H = e2* (X2-X1);

W = X1*Y2-X2*Y1;

U = (l-e2)*(Y1*Z2-Y2*Z1);

V = (1-e2)*(X2*Z21-X1*Z2);

% Set latitude of P3
lat3 = —=(37 + 19/60 + 10.429972/3600) /d2r;

% Set constants P, Q, S that are functions of latitude only
[rho, nu] = radii(a, flat,lat3);

P = C*nu* (1l-e2) *sin(lat3) -

Q = H*nu* (l-e2)*sin(lat3)+

S = W*(l-e2)*tan(lat3);

oe

oe

o

Set starting value of lon3 = longitude of P3
lon3 = lonl;

iter = 1;

while 1
% Compute radii of curvature
f lon3 = P*cos (lon3)-Q*sin(lon3) -5
fdash lon3 = -P*sin(lon3)-Q*cos (lon3);
new_lon3 = lon3-(f lon3/fdash lon3);
if abs(new lon3 - lon3) < le-15

break;

end
lon3 = new lon3;

if iter > 100
fprintf ('Iteration for longitude failed to converge after 100 iterations');
break;

end

iter = iter + 1;

end;

theta = atan2(-Q,P);
lambda = acos (S/sqrt (P"2+Q"2))+theta;

% Print result to screen

Curve of Alignment.doc



fprintf ('\n Y
fprintf ('\nCurve of Alignment');
fprintf ('\n Y
fprintf ('\nEllipsoid parameters');
fprintf ('"\na = %12.4f"',a);
fprintf ('‘\nf = 1/%13.9f',flat);

fprintf ("\n\nTerminal points of curve');
% Print lat and lon of P1

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < O

fprintf ('\nLatitude P1 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (DM S)',D,M,S);
end

[D,M,S] = DMS(lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end
% Print lat and lon of P2

[D,M,S] = DMS (lat2*d2r);
if D == 0 && lat2 < O

fprintf ('\n\nLatitude P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end

[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < 0

fprintf ('\nLongitude P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P2 = %4d %2d %9.6f (DM S)',D,M,S);
end

Q

% Print Coordinate table

fprintf ('\n\nCartesian coordinates"');

fprintf ('\n X Y z');
fprintf ('"\nP1 %$15.6f $15.6f %$15.6f',X1,Y1,7Z1);

fprintf ('\nP2 $15.6f %15.6f %$15.6f',X2,Y2,72);

% Print lat and lon of P3
fprintf ('\n\nGiven latitude of P3');

[D,M,S] = DMS (lat3*d2r);
if D == 0 && lat3 < O

fprintf ('\nLatitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end

fprintf ('\n\nLongitude of P3 computed from Newton-Raphson iteration');

[D,M,S] = DMS (lon3*d2r);
if D == 0 && lon3 < O

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end
fprintf ('\niterations = %4d',iter);

fprintf ('"\n\nLongitude of P3 computed from trigonometric equation');

[D,M,S] = DMS (lambda*d2r) ;
if D == 0 && lambda < 0

fprintf ('\nLongitude P3 = -0 %2d %9.0f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end
[D,M,S] = DMS (theta*d2r);
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if D == 0 && theta < 0
fprintf ('\ntheta P3
else
fprintf ('\ntheta P3 = %4d %2d %9.06f (DM S)',D,M,S);
end

-0 %2d %9.6f (DM S)',M,S);

fprintf ("\n\n");

MATLAB function Geo2Cart.m

function [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)

% [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)

% Function computes the Cartesian coordinates X,Y,Z of a point

% related to an ellipsoid defined by semi-major axis (a) and the

% denominator of the flattening (flat) given geographical

% coordinates latitude (lat), longitude (lon) and ellipsoidal

% height (h). Latitude and longitude are assumed to be in radians.

% Function: Geo2Cart ()

% Usage: [X,Y,Z2] = Geoz2Cart(a,flat,lat,lon,h);

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 6 April 2006

% Version 1.0 20 August 2007

% Functions required:
% radii ()

% Purpose:

% Function Geo2Cart () will compute Cartesian coordinates X,Y,Z
% given geographical coordinates latitude, longitude (both in
% radians) and height of a point related to an ellipsoid

% defined by semi-major axis (a) and denominator of flattening
% (flat) .

% Variables:

% a - semi-major axis of ellipsoid

% e2 - 1lst eccentricity squared

% £ - flattening of ellipsoid

% flat - denominator of flattening f = 1/flat

% h - height above ellipsoid

% lat - latitude (radians)

% lon - longitude (radians)

% P - perpendicular distance from minor axis of ellipsoid

% rm - radius of curvature of meridian section of ellipsoid

% rp - radius of curvature of prime vertical section of ellipsoid

% References:

% [1] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian

% coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The
% Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.

% calculate flattening f and ellipsoid constant e2
f = 1/flat;
e2 = f*(2-f);

% compute radii of curvature for the latitude
[rm, rp] = radii(a,flat,lat);
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compute Cartesian coordinates X,Y,Z
= (rpth) *cos(lat);

= p*cos(lon);

p*sin(lon) ;

(rp* (1-e2) +h) *sin(lat) ;

MATLAB function radii.m

function [rm,rp] = radii(a,flat,lat)

[rm, rpl=radii (a, flat,lat) Function computes radii of curvature in

the meridian and prime vertical planes (rm and rp respectively) at a
point whose latitude (lat) is known on an ellipsoid defined by
semi-major axis (a) and denominator of flattening (flat).
Latitude must be in radians.
Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044) ;

should return rm = 6359422.96233327 metres and

rp = 6386175.28947842 metres
at latitude -37 48 33.1234 (DMS) on the GRS80 ellipsoid

Function: radii (a, flat, lat)
Syntax: [rm, rp] = radii(a,flat,lat);
Author: R.E.Deakin,

School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

email: rod.deakin@rmit.edu.au

Version 1.0 1 August 2003

Version 2.0 6 April 2006

Version 3.0 9 February 2008

Purpose: Function radii() will compute the radii of curvature in
the meridian and prime vertical planes, rm and rp respectively
for the point whose latitude (lat) is given for an ellipsoid
defined by its semi-major axis (a) and denominator of
flattening (flat).

Return value: Function radii() returns rm and rp
Variables:

a - semi-major axis of spheroid

c - polar radius of curvature

c2 - cosine of latitude squared

ep2 - 2nd-eccentricity squared

f - flattening of ellipsoid

lat - latitude of point (radians)

rm - radius of curvature in the meridian plane

rp - radius of curvature in the prime vertical plane
\Y - latitude function defined by V-squared = sqgrt(l + ep2*c2)
V2,V3 - powers of V
Remarks:

Formulae are given in [1] (section 1.3.9, page 85) and in

[2] (Chapter 2, p. 2-10) in a slightly different form.

References:

[1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY, School of
Mathematical and Geospatial Sciences, RMIT University, Melbourne,
AUSTRALIA, March 2008.

[2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2,
Intergovernmental Committee on Surveying and Mapping (ICSM),
February 2002 (www.anzlic.org.au/icsm/gdatum)
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% compute flattening f eccentricity squared e2

f = 1/flat;
c = a/(1-f);
ep2 = f£*(2-£f)/((1-£f)"2);

% calculate the square of the sine of the latitude

c2 = cos(lat)"2;

% compute latitude function V
V2 = l+ep2*c2;

V = sgrt(V2);

V3 = V2*V;

% compute radii of curvature
rm c/V3;
rp c/V;

MATLAB function DMS.m

function [D,M,S] = DMS (DecDegq)

% [D,M,S] = DMS (DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds

val = abs (DecDeq) ;

D = fix(val);

M fix((val-D) *60);

S = (val-D-M/60) *3600;
(
D = -D;

end
return

REFERENCES

Bowring, B. R., (1972), 'Distance and the spheroid', Correspondence, Survey Review, Vol.
XXI, No. 164, April 1972, pp. 281-284.

Clarke, A. R., (1880), Geodesy, Clarendon Press, Oxford.

Deakin, R. E.; (2009), '"The Normal Section Curve on an Ellipsoid', Lecture Notes, School
of Mathematical & Geospatial Sciences, RMIT University, Melbourne, Australia,
November 2009, 53 pages.

Thomas, P. D., (1952), Conformal Projections in Geodesy and Cartography, Special
Publication No. 251, Coast and Geodetic Survey, United States Department of
Commerce, Washington, D.C.
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THE GREAT ELLIPTIC ARC
ON AN ELLIPSOID

R. E. Deakin
School of Mathematical & Geospatial Sciences, RMIT University,
GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA
email: rod.deakin@rmit.edu.au

January 2010

ABSTRACT

These notes provide a detailed derivation of the equation for the great elliptic arc on an
ellipsoid. Using this equation and knowing the terminal points of the curve, a technique is
developed for computing the location of points along the curve. A MATLAB function is
provided that demonstrates the algorithm developed.

INTRODUCTION

In geodesy, the great elliptic arc between P and P, on the ellipsoid is the curve created

by intersecting the ellipsoid with the plane containing P, P, and O (the centre of the

2

ellipsoid).

y3=10

=0 ~ equator M
2;=10

Figure 1: Great elliptic arc on ellipsoid
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Figure 1 shows P on the great elliptic arc between P, and P,. 0, is the geocentric

1 P
latitude of P and A, is the longitude of P.

There are an infinite number of planes that cut the surface of the ellipsoid and contain the
chord PP, but only one of these will contain the centre 0. Two other planes are the
normal section plane PP, (containing the normal at P ) and the normal section plane PP,
(containing the normal at P,). All of these curves of intersection (including the great
elliptic arc and the two normal section curves) are plane curves that are arcs of ellipses
(for a proof of this see Deakin, 2009a). All meridians of longitude on an ellipsoid and the

ellipsoid equator are great elliptic arcs. Parallels of latitude — excepting the equator — are

not great elliptic arcs. So we could say that the great elliptic arc is a unique plane curve

on the ellipsoid — since it is created by the single plane containing P,, P, and O. But it is

not the shortest distance between P and P, ; this unique property (shortest length)
belongs to the geodesic.

Great elliptic arcs are not much used in geodesy as they don't have a practical connection
with theodolite observations made on the surface of the earth that are approximated as
observations made on an ellipsoid; e.g., normal section curves and curves of alignment.
Nor are they the shortest distance between points on the ellipsoid; but, if we ignore earth
rotation, they are the curves traced out on the geocentric ellipsoid by the ground point of
an earth orbiting satellite or a ballistic missile moving in an orbital plane containing the
earth's centre of mass. Here geocentric means O (the centre of the ellipsoid) is coincident

with the centre of mass.

The equation for the curve developed below is similar to that derived for the curve of
alignment in Deakin (2009b) and it is not in a form suitable for computing the distance or
azimuth of the curve. But, as it contains functions of both the latitude and longitude of a
point on the curve, it is suitable for computing the latitude of a point given a particular
longitude; or alternatively the longitude of a point may be computed (iteratively) given a

particular latitude.

EQUATION OF GREAT ELLIPTIC ARC

Figure 1 shows P on the great elliptic arc that passes through P, and P, on the ellipsoid.
The semi-axes of the ellipsoid are a and b (a > b) and the first-eccentricity squared e* and

the flattening f of the ellipsoid are defined by
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@ (1)

Parallels of latitude ¢ and meridians of longitude A have their respective reference planes;
the equator and the Greenwich meridian, and Longitudes are measured 0° to £180° (east
positive, west negative) from the Greenwich meridian and latitudes are measured 0° to
+90° (north positive, south negative) from the equator. The z,y,z geocentric Cartesian
coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis is the
minor axis (axis of revolution). The zOz plane is the Greenwich meridian plane (the origin
of longitudes) and the zOy plane is the equatorial plane. The positive z-axis passes
through the intersection of the Greenwich meridian and the equator, the positive y-axis is
advanced 90° east along the equator and the positive z-axis passes through the north pole

of the ellipsoid.

In Figure 1, 0, is the geocentric latitude of P and (geodetic) latitude ¢ and geocentric
latitude 6 are related by

2

tan9:(1—e2>tan¢>:b—2tan¢:(1—f)2tangz5 (2)
a

The geometric relationship between geocentric latitude 6 and (geodetic) latitude ¢ is

shown in Figure 2.

z
N,
P
7
b & Q??e}/
2r
&Q‘
N < ellipse
0,6/N¢ a M
equator
H

Figure 2: Meridian plane of P

The great elliptic plane in Figure 1 is defined by points ®, @ and @ that are P, P, and
the centre of the ellipsoid O respectively. Cartesian coordinates of ® and @ are computed

from the following equations
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T = I COS ) COS A
Yy = v cos¢sin A (3)
z= 1/(1—62>sinq§

where v = PH (see Figure 2) is the radius of curvature in the prime vertical plane and

a
- 4
J1—e*sin® ¢ @)

The Cartesian coordinates of point @ are all zero.

UV =

The General equation of a plane may be written as
Az +By+Cz+D =0 (5)
And the equation of the plane passing through points @, @ and ® is given in the form of

a 3rd-order determinant

rT—zr, Y-y Z—Z

~0 (6)

Ly, =2 Yy~ Y 2T H

Ty =%y Yy =Yy 275
or expanded into 2nd-order determinants

=49 24 (x_w)_
Yy =Y, 2 — % '

Ly =T, 2, —%2 I, =T, Y, Y

Ly — T, Yy —Y,

l=u)+

1’3—{172 23—22

(z—zl):0 (7)

Expanding the determinants in equation (7) gives

(o= (s = 9)(20 = 2) = (2 = =), — wa)}
B (y B yl){(% _xl)(z‘s _Z2) - (22 B z1>(:z:3 _‘T2)}
o= ]l = o )w — ) = (n—0) (- =)} =0 (®)

Now since z, =y, = 2z, = 0 and equation (8) becomes

(o =2 ){{o. =v) (=) = (= = =) (-w.)}
~(r=v )iz —a)(=2) = (% - ) (=)}
=z o =) () = —u) (=)} = 0 ©)

Expanding and simplifying equation (9) gives
x(y1z2 - y221> - y<$122 - x221) + Z<x1y2 - Q:le) =0
Replacing z, y and z with their equivalents, given by equations (3), gives

U COS ¢ COS A (y1z2 — 9221) —vcosgsin A (xle - a:Qzl) +v (1 - €2>Sin¢($ly2 - 3621/1) =0
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and dividing both sides by v cos¢ gives the equation of the great elliptic arc as

Acos)\—BsinA—FC(l—eg)tan(b:O (10)

where A, B and C are functions of the coordinates of the terminal points P and P,

A=yz —yz B=zz -2z C=1y —1y, (11)
Equation (10) is not suitable for computing the distance along a great elliptic arc, nor is it
suitable for computing the azimuth of the curve, but by certain re-arrangements it is
possible to solve (directly) for the latitude of a point on the curve given a longitude
somewhere between the longitudes of the terminal points of the curve. Or alternatively,
solve (iteratively) for the longitude of a point given a latitude somewhere between the

latitudes of the terminal points.

SOLVING FOR THE LATITUDE

A simple re-arrangement of equation (10) allows the latitude ¢ to be evaluated from

Bsin A — Acos A
0(1—62)

tan¢ = (12)

where A and B and C are functions of terminal points P, and P, given by equations (11).

SOLVING FOR THE LONGITUDE

The longitude A can be evaluated using Newton-Raphson iteration for the real roots of the

equation f (A) = 0 given in the form of an iterative equation

(n+1) = )\(n) B f, ()\ ) (13)
()
where n denotes the n'” iteration and f (/\) is given by equation (10) as
f()\>:Acos)\—Bsin)\+C’(1—62>tan¢ (14)
and the derivative f’()\) = i{f(x\)} is given by
d\
f'()\) = —Asin\ — Bcos A (15)
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An initial value of )\( ) (A for n =1) can be taken as the longitude of P, and the functions

f ()\(1>) and f' (/\(1)

can now be computed from equation (13) and this process repeated to obtain values

evaluated from equations (14) and (15) using A . )\(2) (X for n=2)

)\(3),)\( FERE This iterative process can be concluded when the difference between /\(n,+1) and
)\(n> reaches an acceptably small value.
Alternatively, the longitude can be evaluated by a trigonometric equation derived as
follows. Equation (10) can be expressed as
Bsin)\—Acos/\:C(l—eQ)tangb (16)
and A, B and C are given by equations (11). Equation (16) can be expressed as a
trigonometric addition of the form
C’(l —eQ)tan¢ = Rcos()\ —9)
= RcosAcosf + Rsin Asin6 (17)
Now, equating the coefficients of cos A and sin A in equations (17) and (16) gives
A= —Rcosf; B = Rsinf (18)
and using these relationships
2 2 B
R=+A + B; tan@z—A (19)

Substituting these results into equation (17) gives
C (1 —é ) tan ¢

+ arctan B (20)
VA + B? —A

A\ = arccos

DIFFERENCE IN LENGTH BETWEEN A GEODESIC AND A GREAT ELLIPTIC
ARC

There are five curves of interest in geodesy; the geodesic, the normal section, the great

elliptic arc the loxodrome and the curve of alienment.

The geodesic between P, and P, on an ellipsoid is the unique curve on the surface defining
the shortest distance; all other curves will be longer in length. The normal section curve
PP, is a plane curve created by the intersection of the normal section plane containing the

2

normal at P, and also P, with the ellipsoid surface. And as we have shown (Deakin
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2009a) there is the other normal section curve P P. The curve of alignment (Deakin
2009b, Thomas 1952) is the locus of all points P such that the normal section plane at P
also contains the points P, and P,. The curve of alignment is very close to a geodesic.
The great elliptic arc is the plane curve created by intersecting the plane containing P, P,
and the centre O with the surface of the ellipsoid and the loxodrome is the curve on the

surface that cuts each meridian between P, and P, at a constant angle.

Approximate equations for the difference in length between the geodesic, the normal
section curve and the curve of alignment were developed by Clarke (1880, p. 133) and
Bowring (1972, p. 283) developed an approximate equation for the difference between the
geodesic and the great elliptic arc. Following Bowring (1972), let

s = geodesic length

L = normal section length

D = great elliptic length

S = curve of alignment length

then
4 4
I e ) 4 ) 2
—3 _%S[E] cos” ¢, sin” ay, cos” oy, + -+
4 2
D—s :;—43[%] sin® ¢, cos” ¢, sin” ar, + -+ (21)
4 4
g e S 4 .2 2
— 8 —%S[E] COS ¢ISIH OCHCOS O[l2+"'

where R can be taken as the radius of curvature in the prime vertical at . Now for a

given value of s, D —s will be a maximum if ¢ = 45" and a, = 90" in which case
. . 1
sin” ?, cos’ ?, sin’ a,, = —, thus

(D — s) < %S[E] (22)

For the GRS80 ellipsoid where f = 1/298.257222101, > = f(2 - f), and for s = 1200000 m
(1200 km) and R = 6371000 m , equation (22) gives D —s < 0.001 m .
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MATLAB FUNCTIONS

Two MATLAB functions are shown below; they are: great elliptic _arc_lat.m and
great_ elliptic_arc_lon.m Assuming that the terminal points of the curve are known, the
first function computes the latitude of a point on the curve given a longitude and the

second function computes the longitude of a point given the latitude.

Output from the two functions is shown below for points on a great elliptic arc between
the terminal points of the straight-line section of the Victorian—-New South Wales border.
This straight-line section of the border, between Murray Spring and Wauka 1978, is known
as the Black-Allan Line in honour of the surveyors Black and Allan who set out the border
line in 1870-71. Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast
at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of
the Murray River that is closest to Cape Howe. The straight line is a normal section curve
on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the
normal to the ellipsoid at Murray Spring. The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ —37°47/49.2232" )\ 148°11'48.3333"
Wauka 1978: ¢ —37°30"18.0674" X\ 149° 58’ 32.9932"

The normal section azimuth and distance are:

116° 58'14.173757"  176495.243760 m

The geodesic azimuth and distance are:

116°58'14.219146”  176495.243758 m
Figure 3 shows a schematic view of the Black-Allan line (normal section) and the great
elliptic arc. The relationships between the great elliptic arc and the normal section have

been computed at seven locations along the line (A, B, C, etc.) where meridians of

longitude at 0°15" intervals cut the line. These relationships are shown in Table 1.
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BLACK-ALLAN LINE:

Murray Spring

148°15"

148°30

Normal Section

148°45"

VIC

149°00"

149°15"

149°30"

The Great Elliptic Arc is shown plotted at an exaggerated scale

with respect to the Border Line
At longitude 149°00'E.

the Border Line.
At longitude 149°30’E. the Great Elliptic Arc is 1.522 m north of
the Border Line.

BLACK-ALLAN LINE:

(normal section) .

the Great Elliptic Arc is 1.939 m north of

149°45"

Figure 3

VICTORIA/NSW BORDER

The Black-Allan Line is a normal section curve
on the reference ellipsoid between Pl (Murray
Spring) and P2 (Wauka 1978) . This curve is the
intersection of the normal section plane and the
ellipsoid, and the normal section contains P1,
the normal to the ellipsoid at P1, and P2.

The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ -37°47749.22327 X 148°11’48.3333”
Wauka 1978: ® -37°30718.0674” A 149°58732.9932”

The normal section azimuth and distance are:
116°58714.173757” 176495.243760 m.

Wauka 1978

VICTORIA/NSW BORDER

NAME GDA94 Ellipsoid wvalues
LATITUDE LONGITUDE de o dm = pxdg

Murray | _35047-49.223200" 148°11°48.333300"

Spring
~36°49°07.598047 " N .o, B

A -36°49°07.590584" GEA 148715700.0000007 |\ -0 007463~ | 03°8356-102 | 4 5309
236°55°13.876510° N o .

B -36°55°13.840305" GEa | t98 30700.0000007 | .0 36005~ | ©398465.209 1 4 4 4
~37°01 17.289080" N o e ”

¢ -37°01°17.234433” GEA 148745700.0000007 |\ 15 00 054647~ | 0398373377 | 1 4g46
~37°07 17.845554° N . .

b -37°07°17.782643" GEA 149700700.0000007 |\ - gepg11~ | 03°8681-204 | 14 4394
Z37°13°15.555723" N .. .

£ 37°13°15.494607° GEa | +49 19700.0000007 1 0.0 gg1116- | ©398788.089 1 4 gg4
—37°19°10.429372" N ., .

E -37°19°10.379991" GEA 149730700.0000007 |\ 1440 ga93g1~ | ©3°8894-232 | 4 5,504
237°25°02.476276 ° N .. .

G -37°25°02.448453" GEa | +29 45700.0000007 | 0.0 57503~ | 6398999.632 1 5594

Wauka -37°30°18.067400" 149°58°32.993200"

1978

TABLE 1: Points where the Great Elliptic Arc cuts meridians of A, B, C, etc at 0°15° intervals of

longitude along Border Line.
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>> great elliptic arc lat

Great Elliptic Arc

Ellipsoid parameters
a = 6378137.0000
f 1/298.257222101

Terminal points of curve

Latitude Pl = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M 9)

Cartesian coordinates

X Y Z
Pl -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252

Given longitude of P3
Longitude P3 = 149 30 0.000000 (D M S)

Latitude of P3 computed from trigonometric equation
Latitude P3 = -37 19 10.379991 (D M S)

>>

>> great elliptic arc lon

Great Elliptic Arc

Ellipsoid parameters
a = 6378137.0000
f = 1/298.257222101

Terminal points of curve

Latitude Pl = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = -37 30 18.067400 (D M S)

Longitude P2

149 58 32.993200 (D M 8)

Cartesian coordinates

X Y Z
Pl -4345789.609716 2694844.030716 -3799378.032024
P2 -4386272.668061 2534883.268540 -3862005.992252

Given latitude of P3
Latitude P3 = =37 19 10.379991 (D M S)

Longitude of P3 computed from Newton-Raphson iteration
Longitude P3 = 149 30 0.000001 (D M S)

iterations = 5

Longitude of P3 computed from trigonometric equation

Longitude P3 = 149 30 0.000001 (D M S)
theta P3 = 8 39 58.683516 (D M S)
>>
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MATLAB function great_elliptic _arc_ lat.m

function great elliptic arc lat
% great elliptic arc lat: Given the terminal points Pl and P2 of a great

% elliptic arc on an ellipsoid, and the longitude of a point P3 on the
% curve, this function computes the latitude of P3.

% Function: great elliptic arc lat

% Usage: great elliptic arc lat

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 3 October 2009

% Version 1.1 5 January 2010

% Purpose: Given the terminal points Pl and P2 of a great elliptic arc on

% an ellipsoid, and the longitude of a point P3 on the curve, this
% function computes the latitude of P3.

% Functions required:

% [D,M,S] = DMS (DecDeq)
% [X,Y,Z2] = Geo2Cart(a,flat,lat,lon,h)
% [rm, rp] = radii(a,flat,lat);

% Variables:

% A,B,C - constants of great elliptic arc

% a - semi-major axis of ellipsoid

s b - semi-minor axis of ellipsoid

s d2r - degree to radian conversion factor 57.29577951...
s ez - eccentricity of ellipsoid squared

s £ - f = 1/flat is the flattening of ellipsoid

s flat - denominator of flattening of ellipsoid

% hl,h2 - ellipsoid heights of P1 and P2

% latl,lat2,lat3 - latitude of P1l, P1l, P3 (radians)
% lonl,lon2,lon3 - longitude of P1l, P2, P3 (radians)

% nu - radius of curvature in prime vertical plane
% rho - radius of curvature in meridain plane

$ X1,Y1,71 - Cartesian coordinates of P1

S X2,Y¥2,72 - Cartesian coordinates of P2

% Remarks:

% References:

% [1] Deakin, R.E., 2010, 'The Great Elliptic Arc on an Ellipsoid',

% Lecture Notes, School of Mathematical and Geospatial Sciences,
% RMIT University, January 2010

% Degree to radian conversion factor

d2r = 180/pi;

% Set ellipsoid parameters
a = 6378137; % GRS80
flat = 298.257222101;

% a = 6378160; % ANS

o°

flat = 298.25;

a = 20926062; % CLARKE 1866
b 20855121;

£ 1-(b/a);

flat = 1/f;

o° o° o°
Il

o

o

Compute ellipsoid constants
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f = 1/flat;

e2 = f*(2-f);

% Set lat, lon and height of Pl and P2 on ellipsoid

latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring
lonl = (148 + 11/60 + 48.3333/3600)/d2r;

lat2 = -(37 + 30/60 + 18.0674/3600)/d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;

hl = 0;

h2 = 0;

Compute Cartesian coords of Pl and P2

[X1,Y1,Z21] = Geo2Cart(a,flat,latl,lonl,hl);
[X2,Y2,722] = Geo2Cart(a,flat,lat2,lon2,h?2);
% Compute constants of Curve of Alignment
A = Y1*722-Y2*71;

B = X1*Z2-X2*71;

C = X1*Y2-X2*Y1;

% Set longitude of P3
lon3 = (149 + 30/60)/d2r;

% Compute latitude of P3
lat3 = atan((B*sin(lon3)-A*cos (lon3))/(C*(1-e2)));

fprintf ('\n ')
fprintf ('\nGreat Elliptic Arc');
fprintf ('\n ')
fprintf ('"\nEllipsoid parameters');
fprintf ('\na = %12.4f',a);
fprintf ('‘\nf = 1/%13.9f',flat);

fprintf ('\n\nTerminal points of curve');

% Print lat and lon of Pl

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < 0

fprintf ('\nLatitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (DM S)',D,M,S);
end
[D,M,S] = DMS (lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end
% Print lat and lon of P2
[D,M,S] = DMS (lat2*d2r);
if D == 0 && lat2 < 0

fprintf ('\n\nLatitude P2 = -0 %2d %9.06f (D M S)',M,S);
else

fprintf ('\n\nLatitude P2 = %4d %2d %9.6f (D M S)',D,M,S);
end
[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < O

fprintf ('\nLongitude P2 = -0 %2d %9.0f (DM S)',M,S);
else

fprintf ('\nLongitude P2 = %4d %2d %9.6f (DM S)',D,M,S);

end

)

% Print Coordinate table

fprintf ('\n\nCartesian coordinates"');

fprintf ('\n X Y VAR
fprintf ("\nP1 %$15.6f %$15.6f %$15.6f',X1,Y1,21);

fprintf ('\nP2 $15.6f %$15.6f %$15.6f',X2,Y2,722);
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% Print lat and lon of P3
fprintf ('\n\nGiven longitude of P3');

[D,M,S] = DMS (lon3*d2r);
if D == 0 && 1lon3 < 0

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
end
fprintf ('\n\nLatitude of P3 computed from trigonometric equation');
[D,M,S] = DMS (lat3*d2r);
if D == 0 && lat3 < 0

fprintf ('\nLatitude P3 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLatitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end

fprintf ("\n\n");

MATLAB function great elliptic _arc_ lon.m

function great elliptic arc lon

% great elliptic arc lon: Given the terminal points Pl and P2 of a great
% elliptic arc on an ellipsoid, and the latitude of a point P3 on the
% curve, this function computes the longitude of P3.

% Function: great elliptic arc_ lon

% Usage: great elliptic arc lon

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 3 October 2009

% Version 1.1 5 January 2010

% Purpose: Given the terminal points Pl and P2 of a great elliptic arc on

% an ellipsoid, and the latitude of a point P3 on the curve, this
% function computes the longitude of P3.

% Functions required:

s [D,M,S] = DMS (DecDegq)
% [X,Y,2] = Geo2Cart(a,flat,lat,lon,h)
% [rm, rp] = radii(a,flat,lat);

% Variables:

% A,B,C - constants of great elliptic arc

$ a - semi-major axis of ellipsoid

$ b - semi-minor axis of ellipsoid

% d2r - degree to radian conversion factor 57.29577951...
% e2 - eccentricity of ellipsoid squared

s f - f = 1/flat is the flattening of ellipsoid

% flat - denominator of flattening of ellipsoid

s £ lat3 - function of latitude of P3

% fdash lat3 - derivative of function of latitude of Pp3

% hl,h2 - ellipsoid heights of Pl and P2

% iter - number of iterations

% lambda - longitude of P3 computed from trigonometric equation

$ latl,lat2,lat3 - latitude of P1l, P1l, P3 (radians)
% lonl,lon2,lon3 - longitude of P1l, P2, P3 (radians)

% new lat3 - next latiude in Newton-Raphson iteration
% nu - radius of curvature in prime vertical plane
% rho - radius of curvature in meridain plane
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% theta - auxiliary angle in the computation of lambda
$ X1,Y1,7z1 - Cartesian coordinates of P1
S X2,Y2,722 - Cartesian coordinates of P2

% Remarks:

% References:
% [1] Deakin, R.E., 2010, 'The Great Elliptic Arc on an Ellipsoid',

% Lecture Notes, School of Mathematical and Geospatial Sciences,

% RMIT University, January 2010

% Degree to radian conversion factor
d2r = 180/pi;

% Set ellipsoid parameters

a = 6378137; % GRS80
flat = 298.257222101;
% a = 6378160; % ANS

oe

flat = 298.25;

a = 20926062; % CLARKE 1866
= 20855121;

= 1-(b/a);

flat = 1/£;

o° o° o
Hh O

oe

oe

Compute ellipsoid constants
= 1/flat;
e2 = f*(2-f);

Hh

% Set lat, lon and height of Pl and P2 on ellipsoid

latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring
lonl = (148 + 11/60 + 48.3333/3600)/d2r;

lat2 = -(37 + 30/60 + 18.0674/3600) /d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600)/d2r;

hl = 0;

h2 = 0;

% Compute Cartesian coords of Pl and P2

[X1,Y1,21] = Geo2Cart(a,flat,latl,lonl,hl);
[X2,Y2,22] = Geo2Cart(a,flat,lat2,lon2,h2);

Compute constants of Curve of Alignment
= Y1*722-Y2*Z1;
= X1*Z2-X2*Z1;
X1*Y2-X2*Y1;

Q W P e
|

% Set latitude of P3
lat3 = -(37 + 19/60 + 10.379991/3600) /d2r;

% Set starting value of lon3 = longitude of P1
lon3 = lonl;

iter = 1;
while 1
% Compute radii of curvature
f lon3 = A*cos (lon3)-B*sin(lon3)+C* (1-e2) *tan (lat3);
fdash lon3 = -A*sin(lon3)-B*cos (lon3);
new_lon3 = lon3-(f lon3/fdash lon3);
if abs(new lon3 - lon3) < le-15
break;
end
lon3 = new lon3;

if iter > 100
fprintf ('Iteration for longitude failed to converge after 100
break;

end

iter = iter + 1;
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theta = atan2(B,-3A);
lambda = acos (C* (1-e2)*tan(lat3)/sqrt (A"2+B"2))+theta;

fprintf ('\n ')
fprintf ('\nGreat Elliptic Arc');
fprintf ('\n ')
fprintf ('\nEllipsoid parameters');
fprintf ('\na = %12.4f',a);
fprintf ('\nf = 1/%13.9f',flat);

fprintf ('\n\nTerminal points of curve');
% Print lat and lon of Pl

°

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < O

fprintf ('\nLatitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (DM S)',D,M,S);
end

[D,M,S] = DMS (lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end
% Print lat and lon of P2

°

[D,M,S] = DMS (lat2*d2r);
if D == 0 && lat2 < 0

fprintf ('"\n\nLatitude P2 = -0 %2d %9.0f (DM S)',M,S);
else

fprintf ('\n\nLatitude P2 = %4d %2d %9.6f (DM S)',D,M,S);
end
[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < O

fprintf ('\nLongitude P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P2 = %4d %2d %9.6f (DM S)',D,M,S);
end

)

% Print Coordinate table

fprintf ('\n\nCartesian coordinates"');

fprintf ('\n X Y VAR
fprintf ('\nP1 %$15.6f %$15.6f %$15.6f',X1,Y1,21);

fprintf ('\nP2 $15.6f %$15.6f %$15.6f',X2,Y2,72);

% Print lat and lon of P3
fprintf ('"\n\nGiven latitude of P3');

[D,M,S] = DMS (lat3*d2r);
if D == 0 && lat3 < O

fprintf ('\nLatitude P3 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('\nLatitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end

fprintf ('\n\nLongitude of P3 computed from Newton-Raphson iteration');

[D,M,S] = DMS (lon3*d2r);
if D == 0 && lon3 < O

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P3 = %4d %2d %9.6f (DM S)',D,M,S);
end
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fpri
fpri
[D,M
if D
else
end

[D,M
if D
else

end

fpri

ntf ('\niterations = %4d',iter);

ntf ('\n\nLongitude of P3 computed from trigonometric equation');
,S] = DMS (lambda*d2r) ;

== 0 && lambda < 0

fprintf ('\nLongitude P3 = -0 %2d %9.6f (DM S)',M,S);
fprintf ('\nLongitude P3 = %4d %2d %9.6f (D M S)',D,M,S);
,S] = DMS (theta*d2r);

== 0 && theta < O

fprintf ('\ntheta P3

-0 %$2d $9.6f (DM S)',M,S);

fprintf ('\ntheta P3

%4d %2d $9.6f (DM S)',D,M,S);

ntf("\n\n");

MATLAB function Geo2Cart.m

func

5 [X

% Fu

% Us

% Au

% Fu

% Pu

% Va

% Re
$ (1

tion [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h)

,Y,Z2] = Geo2Cart(a,flat,lat,lon,h)

Function computes the Cartesian coordinates X,Y,Z of a point
related to an ellipsoid defined by semi-major axis (a) and the
denominator of the flattening (flat) given geographical
coordinates latitude (lat), longitude (lon) and ellipsoidal

height (h). Latitude and longitude are assumed to be in radians.
nction: Geo2Cart()
age: [X,Y,Z2] = Geoz2Cart(a,flat,lat,lon,h);
thor: R.E.Deakin,
School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
email: rod.deakin@rmit.edu.au
Version 1.0 6 April 2006
Version 1.0 20 August 2007
nctions required:
radii ()
rpose:
Function Geo2Cart () will compute Cartesian coordinates X,Y,Z
given geographical coordinates latitude, longitude (both in
radians) and height of a point related to an ellipsoid
defined by semi-major axis (a) and denominator of flattening
(flat) .
riables:
a - semi-major axis of ellipsoid
e2 - 1lst eccentricity squared
£ - flattening of ellipsoid
flat - denominator of flattening f = 1/flat
h - height above ellipsoid
lat - latitude (radians)
lon - longitude (radians)
P - perpendicular distance from minor axis of ellipsoid
rm - radius of curvature of meridian section of ellipsoid
rp - radius of curvature of prime vertical section of ellipsoid
ferences:
] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian
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% coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The
% Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999.

o

calculate flattening f and ellipsoid constant e2
= 1/flat;
£*(2-1);

H

2

0]

compute radii of curvature for the latitude
rm, rp] = radii(a,flat,lat);

— o°

oe

compute Cartesian coordinates X,Y,Z
= (rpth) *cos (lat);

= p*cos(lon);

= p*sin(lon);

= (rp*(1-e2)+h)*sin(lat);

N K X 'O
|

MATLAB function radii.m

function [rm,rp] = radii(a,flat,lat)

% [rm,rpl=radii(a, flat,lat) Function computes radii of curvature in

% the meridian and prime vertical planes (rm and rp respectively) at a
% point whose latitude (lat) is known on an ellipsoid defined by

% semi-major axis (a) and denominator of flattening (flat).

% Latitude must be in radians.

% Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044) ;

% should return rm = 6359422.96233327 metres and

% rp = 6386175.28947842 metres

% at latitude -37 48 33.1234 (DMS) on the GRS80 ellipsoid

% Function: radii (a, flat, lat)

% Syntax: [rm, rp] = radii(a,flat,lat);

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 1 August 2003

% Version 2.0 6 April 2006

% Version 3.0 9 February 2008

% Purpose: Function radii() will compute the radii of curvature in

% the meridian and prime vertical planes, rm and rp respectively
% for the point whose latitude (lat) is given for an ellipsoid
% defined by its semi-major axis (a) and denominator of

% flattening (flat).

% Return value: Function radii() returns rm and rp

% Variables:

% a - semi-major axis of spheroid

% cC - polar radius of curvature

% c2 - cosine of latitude squared

%  ep2 - 2nd-eccentricity squared

s £ - flattening of ellipsoid

$ lat - latitude of point (radians)

% rm - radius of curvature in the meridian plane

S rp - radius of curvature in the prime vertical plane

s Vv - latitude function defined by V-squared = sgrt(l + ep2*c2)
$ V2,V3 - powers of V

% Remarks:
% Formulae are given in [1] (section 1.3.9, page 85) and in

Great Elliptic Arc.doc



% [2] (Chapter 2, p. 2-10) in a slightly different form.

% References:
% [1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY, School of

% Mathematical and Geospatial Sciences, RMIT University, Melbourne,
% AUSTRALIA, March 2008.

% [2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2,

% Intergovernmental Committee on Surveying and Mapping (ICSM),

% February 2002 (www.anzlic.org.au/icsm/gdatum)

% compute flattening f eccentricity squared e2
£ = 1/flat;

c a/(1-£f);

ep2 = £*(2-£)/((1-£)"2);

% calculate the square of the sine of the latitude
c2 = cos(lat)"2;

% compute latitude function V
V2 = l+ep2*c2;

V = sqrt(V2);

V3 = V2*V;

% compute radii of curvature
rm = c/V3;

rp = c/V;

MATLAB function DMS.m

function [D,M,S] = DMS (DecDeg)
% [D,M,S] = DMS (DecDeg) This function takes an angle in decimal degrees and returns
Degrees, Minutes and Seconds

o

val = abs (DecDeq) ;

D = fix(val);

M = fix ((val-D)*60);

S (val-D-M/60) *3600;
DecDeg<0)

= -D;
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THE LOXODROME ON AN ELLIPSOID

R. E. Deakin
School of Mathematical & Geospatial Sciences, RMIT University,
GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA
email: rod.deakin@rmit.edu.au

January 2010

ABSTRACT

These notes provide a detailed explanation of the geometry of the loxodrome on the
ellipsoid. Equations are derived for azimuth and distance of a loxodrome between two
points on an ellipsoid and these equations enable the development of algorithms for the
solution of the direct and inverse problems of the loxodrome. A MATLAB function is

provided that demonstrates an algorithm for the inverse problem.

INTRODUCTION

The loxodrome between P and P, on the ellipsoid is a curved line such that every element
of the curve ds intersects a meridian at a constant azimuth «. Unless a = 0°,90°,180° or

270° the loxodrome will spiral around the ellipsoid and terminate at one of the poles. In

other cases the loxodrome will lie along a meridian of longitude (a = 0°,180°) or a parallel

of latitude (a = 90°,270°).

Figure 1: Loxodrome on the earth's surface
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In marine and air navigation, aircraft and ships sailing or flying on fixed compass headings
are moving along loxodromes, hence knowledge of loxodromes is important in navigation.
Mercator's projection — a normal aspect cylindrical conformal projection — has the unique

property that loxodromes on the earth's surface are projected as straight lines on the map.

In geodesy the direct problem (computing position given azimuth and distance from a
known location) and the inverse problem (computing azimuth and distance between known
positions) are fundamental operations and can be likened to the equivalent operations of
plane surveying; radiations (computing coordinates of points given bearings and distances
radiating from a point of known coordinates) and joins; (computing bearings and distances
between points having known coordinates). The direct and inverse problems in geodesy
are usually associated with the geodesic which is the unique curve defining the shortest

path on the ellipsoid but they can also be associated with other curves. So;

The direct problem of the loxodrome on the ellipsoid is: given latitude and longitude
of P and the azimuth « and distance s of a loxodrome between P, and P,; compute

the latitude and longitude of P, .

The inverse problem of the loxodrome on the ellipsoid is: given the latitude and
longitude of P and P,; compute the azimuth a and distance s of the loxodrome

between P1 and P2

The equations necessary for the solution of the direct and inverse problems are derived
from the differential geometry of the ellipsoid and in particular, relationships that can be

obtained from the differential rectangle on the ellipsoid. Also, meridian distance (the

distance along a meridian from the equator) is used in computing loxodrome distances.
Discussions of differential geometry of the ellipsoid and meridian distance can be found in
Deakin & Hunter (2008) or geodesy textbooks (e.g., Lauf 1983; Bomford 1980), and an

excellent treatment of the loxodrome on the ellipsoid can be found in Bowring (1985).

THE ELLIPSOID

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse about its
minor axis. The size and shape of an ellipsoid is defined by one of three pairs of
parameters: (i) a,b where a and b are the semi-major and semi-minor axes lengths of an
ellipsoid respectively (and a > b), or (ii) a,f where fis the flattening of an ellipsoid, or
(iii) a,e’ where €’ is the square of the first eccentricity of an ellipsoid.
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Figure 2: The reference ellipsoid

The ellipsoid parameters a,b, f,e’ are related by the following equations

oozt 40 (1)
a a
b=a(l-f) (2)
a’—b b’
=t 1 Yy (3)
a a
2 bZ _ _ 2
1—e =t oi-fe-p=0-) (4)
The second eccentricity e’ of an ellipsoid is also of use and
e’Q:‘w—bQ:a_Q_l: e’ :f(2—f) (5)
b* b? 1—¢  (1—f)
6/2

In Figure 2 the normal to the surface at P intersects the rotational axis of the ellipsoid
(the z-axis) at H making an angle ¢ with the equatorial plane of the ellipsoid — this is the
latitude of P. The longitude A is the angle between the Greenwich meridian plane (a
reference plane) and the meridian plane (the z-w plane) containing the normal through P.

¢ and \ are curvilinear coordinates and meridians of longitude (curves of constant A) and

parallels of latitude (curves of constant ¢ ) are parametric curves on the ellipsoidal surface.
At P on the surface of the ellipsoid, planes containing the normal to the ellipsoid intersect

the surface creating elliptical sections known as normal sections. Amongst the infinite

number of possible normal sections at a P; each having a certain radius of curvature, two
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are of interest: (i) the meridian section, containing the axis of revolution of the ellipsoid

and having the least radius of curvature, denoted by p, and (ii) the prime vertical section,

perpendicular to the meridian plane and having the greatest radius of curvature, denoted

by v.

B a(l—eQ) B a(l—eQ)
a (l—e2 sin’ ¢)‘ oW "

woles

- a _a (8)

(1 — e’ sin’ ¢>% W

W? =1-¢"sin*¢ 9)

For P, the centre of the radius of curvature of the prime vertical section is at H and
v = PH . The centre of the radius of curvature of the meridian section lies on the normal

between P and H.

Alternative equations for the radii of curvature p and v are given by

a C

p= =5 (10)

b(l +€’* cos” ¢)' Ve

rofee

2

v = - =2 (11)
b<1 + €’* cos”® (;5)2 4
2
-r_ 9 (12)
b 1—f
V:=1+¢"cos’ ¢ (13)
and c is the polar radius of curvature of the ellipsoid.
The latitude functions W and V are related as follows
2
eV ad w=—YV Py (14)
1 _|_ e (1 + 6/2)2 a

Points on the ellipsoid surface have curvilinear coordinates ¢, A\ and Cartesian coordinates
x,1,2 where the z-z plane is the Greenwich meridian plane, the z-y plane is the equatorial
plane and the y-z plane is a meridian plane 90° east of the Greenwich meridian plane.

Cartesian and curvilinear coordinates are related by
T = I/ COS ) COS A
Y = 1 COS P Ccos A (15)
z= V(l — 62)Sin¢
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Note that v (1 — 62) is the distance along the normal from a point on the surface to the

point where the normal cuts the equatorial plane.

DIFFERENTIAL RELATIONSHIPS FOR THE LOXODROME ON THE ELLIPSOID

The derivation of equations relating to the loxodrome requires an understanding of the

connection between differentially small quantities on the surface of the ellipsoid.

meridian T o

Figure 3: The differential rectangle on an ellipsoid (a,b)

These relationships can be derived from the differential rectangle, with diagonal PQ in
Figure 3 which shows P and @) on an ellipsoid whose semi-axes are a and b (a > b). P and
Q) are separated by differential changes in latitude d¢ and longitude dA and are connected
by a loxodrome of length ds making an angle « (the azimuth) with the meridian through
P. The meridians A and A + d)\, and the parallels ¢ and ¢ + d¢ form a differential
rectangle on the surface of the ellipsoid. The differential distances dp along the parallel ¢

and dm along the meridian A are
dp = wd\ = vcospd (16)
dm= pd¢ (17)

where p and v are radii of curvature in the meridian and prime vertical planes

respectively and w = v cos¢ is the perpendicular distance from the rotational axis NOS.
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From Figure 3, the differential distance ds is given by
ds = Jdm* + dp
= \/p2d¢2 + 1% cos” pd\

2
pdo

v COS ¢

= vcospydqg’ + d)\’ (18)

+ d)\?

= v COS ¢

q is known as the isometric latitude defined by the differential relationship

dg = —L—d¢ (19)
v Cos ¢

(q,)\) is a curvilinear coordinate system on the ellipsoid with isometric parameters where

isometric means of equal measure (iso = equal; metric = able to be measured). We can
see this from equation (18) where the differential distances along the parametric curves g

and A are dm = vcos¢dq and dp = vcospdl, i.e., the differential distances are equal for

equal angular differentials dq and d\ .

Also from Figure 3 the azimuth « of the loxodrome is obtained from

v cosdA
tanqg = —— = A (20)
pdo dq
and azimuth o and distance s are linked by the differential relationship
dm 1
ds = = pdo (21)

COS ¢ COS ¥

ISOMETRIC LATITUDE

The isometric latitude is defined by the differential equation (19) from which we obtain

o= [—L—dp+c, (22)

U COS ¢
where C| is a constant of integration.
Substituting into equation (22) expressions for p and v given by equations (7) and (8),
and simplifying gives

1-— 62>

= f (1 — e’ sin’ gzﬁ)cosgb

dé +C, (23)
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The integrand of equation (23) can be separated into partial fractions

1—¢ A B
2( 2 ) - 2 2 + (24)
<1—6 sin qb)cosqS <1—6 sin qb) Cos ¢
Expanding and simplifying equation (24) gives
1—¢" = Acoso + 3(1—62 sin’ ¢)
= Acos¢ + B — Be’ (1 — cos” qb)
= B<1—62)—|-(A-i-Be2 cosgb)cosqb (25)

A and B are obtained by comparing the coefficients of 1 —e” and cos¢ in equation (25)
giving
B=1 A= -¢cos¢

Substituting these results into equation (24) gives the isometric latitude as

0= [——do —fleﬂqu (26)

cos ¢ —e’sin’ ¢

Put esing = sinu then ecos¢d¢ = cosudu and

1 Cos U
= dp —e| ————du+C
1 fcos¢ ¢ efl—sin2u ! '

:f 1 dé —efcoiudu+01

cos ¢ cos” U
1 1
= dp —e du + C 27
f cos @ ¢ f cos U ! 27)
) T X . .
From standard integrals f dr = In {tan 1 + 5 J» and from half-angle trigonometric
COS T

_+_

A 1—cosA . . Tz 1_COS($+7T/2) 1+sinz
formula tan|—|= 4+,|———— giving tan = = — .
2 1+ cosA 4 2 1+cos(x+7r/2) 1—sinz

Substituting these results into equation (27) gives the isometric latitude as

1
] 2
g = Intan z—i—f +C, —eln w -C, +C|
4 2 1—esing
where C|,C, and C, are constants of integration. Using the laws of logarithms:

log MN =log M +log N, log, % =log, M —log N and log M" = plog M , and

defining a new constant of integration C'= C, —C, + C| gives
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esing)?
q:lntanz—f—?—f—lnﬂ +C
4 2 1+ esing
esing )2
=1In tanz-l-? 1-esing +C (28)
4  2)(1+esing

The constant C'in equation (28) equals zero since if ¢ =0 then ¢ = 0 and the isometric

latitude ¢ is obtained from

T, ¢
4

= In{tan
1 2

esing )2
1 es%nqb (29)
1+ esing

This derivation follows Lauf (1983) where an integral identical to equation (22) is
evaluated as part of the derivation of the equations for the ellipsoidal Mercator projection
— a conformal projection of the ellipsoid. Thomas (1952) derives a similar equation in his

development of conformal representation of the ellipsoid upon a plane.

THE EQUATION OF THE LOXODROME
By re-arranging equation (20) we have

d\ = tanadqg

and integrating both sides, noting that tana is a constant, gives
A 5
f d\ = tan« f dq
A 9
A=A = tanoc(q2 —ql)

And the equation of the loxodrome between P and P, on the ellipsoid is

1 2
AN = Agtana (30)

where AA =), —\ and Aq = g, — ¢, are differences in longitude and isometric latitude

1

respectively and « is the (constant) azimuth of the loxodrome.
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THE AZIMUTH OF A LOXODROME

The azimuth « of a loxodrome between P and P, on an ellipsoid can be obtained from

equation (30) as

« = arctan [M] = aurctam[)\2 — )\1] (31)

Agq q, — q,

where ¢,,q, are isometric latitudes of P and P, respectively and ¢ is given by equation

(29). A, A, are the longitudes of P and F,.

1

DISTANCE ALONG A LOXODROME

Consider a loxodrome of constant azimuth « that crosses the equator and passes through

P1 and P2 The distance s between P1 and P2 can be defined as s = s, =8, where 8, and

s, are distances from the equator to P and P, respectively and from equations (21) and

(7) we may write

1 @(1_62)®1 1 m
! cosa[p ¢ cos fW3 ¢ cos v (32)
and similarly
m,
5, = — (33)
CoS (v

m, and m, are meridian distances and meridian distance m is defined as the length of the
arc of the meridian to a point in latitude ¢ . m is obtained from the differential

relationship given by equation (17) and

m = ?p do = a(l—eQ)‘Zﬁ(l—e2 sin’ (;5)2 do = a(l—eQ)jﬁ# d¢o (34)

0 0

This is an elliptic integral of the second kind and cannot be evaluated directly; instead, the
1 _2
integrand ﬁ = (1 — ¢’ sin’ ¢) ? is expanded by using the binomial series and then

evaluated by term-by-term integration. Following Deakin & Hunter (2008) we obtain an

expression for the meridian distance as
m = a{4,p — A, sin2¢ + A, sin4¢p — A; sin6¢ + A, sin8p — A, sin10¢ + ---} (35)

where
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A = Ll B3 5 s 175 o ALy
4 64 256 16384 65536

Az :§[62 —1—164 _|_£66 _f_ﬁeg_’_ﬁem _|_]
4 128 512 16384

5(, 3 4 35 3 105
s = ——-|¢e t—-e +—e +—e + -
256 4 64 256 (36)
35 ¢ 9 s 315 ]
= —]e —|——e +_e +
4 3072[ 4 256
NP
131072 4
693 10
— +...
2= 1072 ° )

Combining equations (32) and (33) gives the length of the loxodrome between P and P,

1

as

= T (37)

COS v

where « is the (constant) azimuth and m, and m, are meridian distances for ¢, and ¢,

obtained from equation (35).

THE DIRECT PROBLEM OF THE LOXODROME ON THE ELLIPSOID

The direct problem is: Given latitude and longitude of P, azimuth «, of the loxodrome
PP, and the arc length s along the loxodrome curve; compute the

latitude and longitude of P, and the reverse azimuth a,, .

With the ellipsoid constants a, f, and ¢’ and given ¢,,\,a,, and s the problem may be

solved by the following sequence.

1. Compute m, the meridian distance of P using equation (35).

2. Compute meridian distance m, from equation (37) where
m, = scosay, +m,

3. Use Newton-Raphson iteration to compute latitude ¢

, using equation (35) re-

arranged as

f(6)=a{Ap— A sin26 + A sindp — A sin6¢ + A sin8¢ — A sin10¢} —m =0
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fle)
4]
f! ((b) =a {AO — 24, cos2¢ + 44, cos4gp — 64, cos6p + 84, cos8¢p — 104 cos 10¢}

where f'(¢) = %{ f(¢)} and

and the iterative equation gb(nﬂ) = Qﬁ(n) -

An initial value of gb(1> (¢ for n =1) can be taken as the latitude of P and the

1

functions f (gb( )

computed from the iterative equation and this process repeated to obtain values

and f'(¢<1>) evaluated using ¢, . gzb(z) (¢ for n =2) can now be

¢(3>,¢( g This iterative process can be concluded when the difference between

¢(n+1) and ¢(n> reaches an acceptably small value.

Compute isometric latitudes ¢, and ¢, using equation (29) and then the difference in

isometric latitudes Aq = ¢, —q,
Compute the difference in longitude AX =\, — A from equation (30)
Compute longitude A, from A\, =\ + A\

Compute reverse azimuth from a, =« , 180"

THE INVERSE PROBLEM OF THE LOXODROME ON THE ELLIPSOID

The inverse problem is: Given latitudes and longitudes of P, and P, on the ellipsoid,

1

compute the azimuth «, of the loxodrome P.P,, the arc length s

along the loxodrome curve and the reverse azimuth «,, .

With the ellipsoid constants a, f, and e’ and given ¢,A\ and ¢,, A\ the problem may be

solved by the following sequence.

1.

Compute isometric latitudes ¢, and ¢, using equation (29) and then the difference in

isometric latitudes Agq = ¢, —q,

Compute the longitude difference AX = A, — A and then the azimuth o, using
equation (31).

Compute meridian distances m  and m, using equation (35).
Compute the arc length s from equation (37).

Compute reverse azimuth from «, = «,, + 180"

Loxodrome on Ellipsoid.doc 11



MATLAB FUNCTIONS

A MATLAB function lozodrome_ inverse.m is shown below. This function computes the

inverse problem of the loxodrome on the ellipsoid.

Output from the function is shown below for points on a great elliptic arc between the
terminal points of the straight-line section of the Victorian—-New South Wales border. This
straight-line section of the border, between Murray Spring and Wauka 1978, is known as
the Black-Allan Line in honour of the surveyors Black and Allan who set out the border
line in 1870-71. Wauka 1978 (Gabo PM 4) is a geodetic concrete border pillar on the coast
at Cape Howe and Murray Spring (Enamo PM 15) is a steel pipe driven into a spring of
the Murray River that is closest to Cape Howe. The straight line is a normal section curve
on the reference ellipsoid of the Geocentric Datum of Australia (GDA94) that contains the
normal to the ellipsoid at Murray Spring. The GDA94 coordinates of Murray Spring and
Wauka 1978 are:

Murray Spring: ¢ —37°47/49.2232" )\ 148°11'48.3333"
Wauka 1978: ¢ —37°30'18.0674" X 149° 58'32.9932"

The normal section azimuth and distance are:

116°58'14.173757"  176495.243760 m

The geodesic azimuth and distance are:

116° 58'14.219146”  176495.243758 m

The loxodrome azimuth and distance are:

116° 26'08.400701”  176497.829952 m
Figure 4 shows a schematic view of the Black-Allan line (normal section) and the great
elliptic arc. The relationships between the great elliptic arc and the normal section have

been computed at seven locations along the line (A, B, C, etc.) where meridians of

longitude at 0°15" intervals cut the line. These relationships are shown in Table 1.
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BLACK-ALLAN LINE: VICTORIA/NSW BORDER

The Black-Allan Line is a normal section curve
on the reference ellipsoid between Pl (Murray
Spring) and P2 (Wauka 1978) . This curve is the
intersection of the normal section plane and the
ellipsoid, and the normal section contains PI1,
the normal to the ellipsoid at P1, and P2.
N S s‘ s The GDA94 coordinates of Murray Spring and
Wauka 1978 are:
Murray Spring: ¢ -37°47749.2232”7 L 148°11’'48.3333”
Wauka 1978: ¢ -37°30718.0674” XL 149°58732.9932"

Loxodr ome
Ny ‘{////// The normal section azimuth and distance are:
~ 116°58714.173757” 176495.243760 m.

The geodesic azimuth and distance are:
116°58714.219146” 176495.243758 m.

Murray Spring

148°15"

148°30"

148°457 The loxodrome azimuth and distance are:
116°26708.400701” 176497.829952 m.

149°00"
Normal Section

149°15”

VIC

149°45"

Wauka 1978

The loxodrome is shown plotted at an exaggerated scale with respect to the
Border Line (normal section).

At longitude 149°00’E. the loxodrome is 457.918 m north of the Border Line.
At longitude 149°30'E. the loxodrome is 361.250 m north of the Border Line.

Figure 4

BLACK-ALLAN LINE: VICTORIA/NSW BORDER

NAME GDA9%4 Ellipsoid values
LATITUDE LONGITUDE do o dm = pxdg

Murray | _35047:49.223200" 148°11748.333300"

Spring
236°49°07.598047° N .. ”

A -36°49°05.849245" Lox 148715700.0000007 |\ - 4q 748502~ | 0398356102 | 55 4059
~36°55°13.876510° N oo ”

B ~36°55°05.371035" Lox 148730700.0000007 |\ 155 505475~ | 6398465209 | 65 195
~37°01°17.289080° N .. ”

¢ 237°01°04.418599” Lox | t48 45700.000000 1 515 gg0ag1~ | ©398373-377 | 394 7613
Z37°07 17.845554" N . ”

b -37°07°02.991484" Lox 149700700.0000007 |\ 15 14 g54070~ | 03°8681-204 | 455 9197
237°13°15.555723" N . .

£ -37°13°01.089240" Lox | t22 15700.000000" 1 y.1s sgeag3- | 0358788089 1 5q 9747
~37°19°10.429372° N . ”

F -37°18°58.711427" Lox 149730700.0000007 |\ 15 17 717945~ | 0398834.232 | 560 5501
~37°25°02.476276° N . -

¢ -37°24°55.857608" Lox 149745700.0000007 |\ -5 g18668~ | ©3°8992-932 | 1504 0489

?gsga -37°30°18.067400" 149°58°32.993200"

TABLE 1: Points where the Great Elliptic Arc cuts meridians of A, B, C, etc at 0°15° intervals of
longitude along Border Line. N = Normal Section, Lox = Loxodrome
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>> help loxodrome inverse

loxodrome inverse: This function computes the inverse case for a
loxodrome on the reference ellipsoid. That is, given the latitudes and
longitudes of two points on the ellipsoid, compute the azimuth and the

arc length of the loxodrome on the surface.

>> loxodrome inverse

Loxodrome: Inverse Case

Ellipsoid parameters
a = 6378137.0000
f = 1/298.257222101

Terminal points of curve

Latitude Pl = -36 47 49.223200 (D M S)
Longitude P1 = 148 11 48.333300 (D M S)
Latitude P2 = =37 30 18.067400 (D M S)
Longitude P2 = 149 58 32.993200 (D M S)
isometric lat Pl = -39 23 36.268670 (D M S)

isometric lat P2

-40 16 40.540366 (D M S)

diff isometric lat P2-P1 = -0 53 4.271697 (D M S)
diff in longitude P2-P1 = 1 46 44.659900 (D M S)
meridian distance P1 = -4073983.614420

meridian distance P2 = -4152559.155874

diff in mdist P2-P1 = -78575.541454

Azimuth of loxodrome P1-P2

Az12 = 116 26 8.400701 (D M S)

loxodrome distance P1-P2
s = 176497.829952

>>

Loxodrome on Ellipsoid.doc
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MATLAB function loxodrome_inverse.m

function loxodrome inverse

loxodrome inverse: This function computes the inverse case for a
loxodrome on the reference ellipsoid. That is, given the latitudes and
longitudes of two points on the ellipsoid, compute the azimuth and the
arc length of the loxodrome on the surface.

Function: loxodrome inverse ()
Usage: loxodrome inverse
Author: R.E.Deakin,

School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

email: rod.deakin@rmit.edu.au

Version 1.0 5 October 2009

Version 1.1 11 January 2010

Purpose: This function computes the inverse case for a loxodrome on the
reference ellipsoid. That is, given the latitudes and longitudes of
two points on the ellipsoid, compute the azimuth and the arc length of
the loxodrome on the surface.

Functions required:
[D,M,S] = DMS (DecDeq)
isolat = isometric(flat,lat)
mdist = meridian dist(a,flat,lat)

Variables:
Az12 - azimuth of loxodrome P1-P2 (radians)
a - semi-major axis of spheroid
d2r - degree to radian conversion factor 57.29577951...
disolat - difference in isometric latitudes (isolat2-isolatl)
dlon - difference in longitudes (radian)
dm - difference in meridian distances (dm = m2-ml)
e - eccentricity of ellipsoid
e2 - eccentricity of ellipsoid squared
f - f = 1/flat is the flattening of ellipsoid
flat - denominator of flattening of ellipsoid
isolatl - isometric latitude of Pl (radians)
isolat2 - isometric latitude of P2 (radians)
latl - latitude of Pl (radians)
lat2 - latitude of P2 (radians)
lonl - longitude of Pl (radians)
lon2 - longitude of P2 (radians)
lox s - distance along loxodrome
ml, m2 - meridian distances of Pl and P2 (metres)
pion2 - pi/2
Remarks:
References:

[1] Deakin, R.E., 2010, 'The Loxodrome on an Ellipsoid', Lecture Notes,
School of Mathematical and Geospatial Sciences, RMIT University,
January 2010

[2] Bowring, B.R., 1985, 'The geometry of the loxodrome on the
ellipsoid', The Canadian Surveyor, Vol. 39, No. 3, Autumn 1985,
pp.223-230.

[3] Snyder, J.P., 1987, Map Projections-A Working Manual. U.S.
Geological Survey Professional Paper 1395. Washington, DC: U.S.
Government Printing Office, pp.l15-16 and pp. 44-45.

[4] Thomas, P.D., 1952, Conformal Projections in Geodesy and
Cartography, Special Publication No. 251, Coast and Geodetic
Survey, U.S. Department of Commerce, Washington, DC: U.S.
Government Printing Office, p. 66.
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% Degree to radian conversion factor
d2r = 180/pi;

% Set ellipsoid parameters
a 6378137; % GRS80
flat = 298.257222101;

% Set lat and long of Pl and P2 on ellipsoid

latl = -(36 + 47/60 + 49.2232/3600) /d2r; % Spring

lonl = (148 + 11/60 + 48.3333/3600) /d2r;

lat2 = -(37 + 30/60 + 18.0674/3600) /d2r; % Wauka 1978
lon2 = (149 + 58/60 + 32.9932/3600) /d2r;

)

% Compute isometric latitude of Pl and P2
isolatl = isometric(flat,latl);

isolat?2 = isometric(flat,lat?2);

% Compute changes in isometric latitude and longitude between Pl and P2
disolat = isolat2-isolatl;

dlon = lon2-lonl;

% Compute azimuth

Az12 = atan2(dlon,disolat);

% Compute distance along loxodromic curve
ml = meridian dist(a, flat,latl);

m2 = meridian dist(a, flat,lat2);

dm = m2-ml;

lox s = dm/cos(Azl2);

fprintf (' \n======================= Y
fprintf ('\nLoxodrome: Inverse Case');
fprintf (' \n======================= Y
fprintf ('\nEllipsoid parameters');
fprintf ('\na = %12.4f',a);

fprintf ('‘\nf = 1/%13.9f',flat);

fprintf ('\n\nTerminal points of curve');
% Print lat and lon of Point 1

°

[D,M,S] = DMS (latl*d2r);
if D == 0 && latl < O

fprintf ('\nLatitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLatitude Pl = %4d %2d %9.6f (DM S)',D,M,S);
end
[D,M,S] = DMS (lonl*d2r);
if D == 0 && lonl < O

fprintf ('\nLongitude P1 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nLongitude P1 = %4d %2d %9.6f (DM S)',D,M,S);
end

% Print lat and lon of point 2
[

D,M,S] = DMS (lat2*d2r);
if == 0 && latl < 0

fprintf ('"\n\nLatitude P2 = -0 %2d %9.06f (DM S)',M,S);
else

fprintf ('"\n\nLatitude P2 = %4d %2d %9.6f (DM S)',D,M,S);
end
[D,M,S] = DMS (lon2*d2r);
if D == 0 && lon2 < O

fprintf ('\nLongitude P2 = -0 %$2d %9.6f (DM S)',M,S);
else
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fprintf ('\nLongitude P2 = %4d %2d %9.6
end

% Print isometric latitudes of Pl and P2
[D,M,S] = DMS (isolatl*d2r);
if D == 0 && isolatl < O

fprintf ('\n\nisometric lat Pl = -0
else

fprintf ('\n\nisometric lat Pl $4d %

end

f (bMs)',DM,S);

%2d $9.6f (DM S)',M,S8);

2d %9.6f (DM S)',D,M,S);

[D,M,S] = DMS (isolat2*d2r);
if D == 0 && isolat2 < 0

fprintf ('\nisometric lat P2 = -0 %2d %9.6f (DM S)',M,S);
else

fprintf ('\nisometric lat P2 = %4d %2d

end

% Print differences in isometric latitudes
[D,M,S] = DMS (disolat*d2r);
if D == 0 && disolat < 0

fprintf ('\n\ndiff isometric lat P2-P1
else

fprintf ('\ndiff isometric lat P2-Pl =
end
[D,M,S] = DMS (dlon*d2r) ;
if D == 0 && dlon < O

fprintf ('\ndiff in longitude P2-P1 =
else

fprintf ('\ndiff in longitude P2-P1 =
end

)

% Print meridian distances of Pl and P2

fprintf ('\n\nmeridian distance P1 = £15.6
fprintf ('\nmeridian distance P2 = %15.6f"'
fprintf ('\n\ndiff in mdist P2-P1 = £15.6

[

% Print azimuth of loxodrome
fprintf ('\n\nAzimuth of loxodrome P1-P2');

[D,M,S] = DMS (Az12*d2r) ;
fprintf ('\nAz12 = %3d %2d %9.6f (D M S)'

Q

% Print loxodrome distance P1-P2
fprintf ('\n\nloxodrome distance P1-P2');
fprintf('\ns = %15.6f',lox s);

fprintf ("\n\n");

Loxodrome on Ellipsoid.doc

%$9.6f (DM S)',D,M,S);

and longitudes

= -0 %2d %9.6f (DM S)',M,S);

%4d %2d %$9.6f (DM S)',D,M,S);

-0 %2d %9.6f (D M S)',M,S);

%4d %2d %$9.6f (DM S)',D,M,S);

£f',ml);
,m2) ;
£',dm);

+D,M,8);
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MATLAB function tsometric.m

function isolat = isometric(flat, lat)

N

oe

is

isolat=isometric(flat,lat) Function computes the isometric latitude
(isolat) of a point whose latitude (lat) is given on an ellipsoid whose
denominator of flattening is flat.
Latitude (lat) must be in radians and the returned value of isometric
latitude (isolat) will also be in radians.
Example: isolat = isometric(298.257222101,-0.659895044028705) ;
should return isolat = -0.709660227088983 radians,
equal to -40 39 37.9292417795658 (DMS) for latitude equal to
-0.659895044028705 radians (-37 48 33.1234 (DMS)) on the GRS80

ellipsoid.
Function: isometric(flat,lat)
Syntax: isolat = isometric(flat,lat);
Author: R.E.Deakin,

School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

email: rod.deakin@rmit.edu.au

Version 1.0 5 October 2009

Purpose: Function computes the isometric latitude of a point whose
latitude is given on an ellipsoid defined by semi-major axis (a) and
denominator of flattening (flat).

Return value: Function isometric () returns isolat (isometric latitude in
radians)
Variables:
e - eccentricity of ellipsoid
e2 - eccentricity-squared
£ - flattening of ellipsoid
flat - denominator of flattening
Remarks:

Isometric latitude is an auxiliary latitude proportional to the spacing
of parallels of latitude on an ellipsoidal Mercator projection.

References:
[1] Snyder, J.P., 1987, Map Projections-A Working Manual. U.S.
Geological SurveyProfessional Paper 1395. Washington, DC: U.S.
Government Printing Office, pp.l5-16.

compute flattening f eccentricity squared e2
= 1/flat;

£* (2-1);
= sqrt(e2);

e*sin(lat) ;
(1-x)/ (1+x);
pi/4 + lat/2;

calculate the isometric latitude
olat = log(tan(z)*(y~(e/2)));
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MATLAB function meridian_ dist.m

function mdist = meridian dist(a,flat,lat)

% mdist = meridian dist(a,flat,lat) Function computes the meridian distance
% on an ellipsoid defined by semi-major axis (a) and denominator of

% flattening (flat) from the equator to a point having latitude (lat) in
% radians.

% e.g. mdist = (6378137, 298.257222101, -0.659895044028705) will compute
% the meridian distance for a point having latitude -37 deg 48 min

% 33.1234 sec on the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101).

% Function: meridian dist()

% Usage: mdist = meridian dist(a,flat,lat)

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 5 October 2009

% Purpose: Function computes the meridian distance

% on an ellipsoid defined by semi-major axis (a) and denominator of

% flattening (flat) from the equator to a point having latitude (lat) in
% radians.

% Functions required:

% Variables: a - semi-major axis of spheroid

% A,B,C... - coefficients

% e2 - eccentricity squared

% ed,e6,... — powers of e2

% f - £ = 1/flat is the flattening of ellipsoid

% flat - denominator of flattening of ellipsoid

% mdist - meridian distance

% Remarks: The formulae used are given in Baeschlin, C.F., 1948,

% "Lehrbuch Der Geodasie", Orell Fussli Verlag, Zurich, pp.47-50.
% See also Deakin, R. E. and Hunter M. N., 2008, "Geometric

% Geodesy - Part A", Lecture Notes, School of Mathematical and
% geospatial Sciences, RMIT University, March 2008, pp. 60-65.

% compute eccentricity squared
f = 1/flat;
e2 = £*(2-f);

)

% powers of eccentricity

ed = el2*e2;
e6 = ed*e2;
e8 = eb6*e2;

el0 = e8*e2;

coefficients of series expansion for meridian distance

1+(3/4) *e2+(45/64) *ed+(175/256) *e6+(11025/16384) *e8+ (43659/65536) *e10;
(3/4) *e2+(15/16) *ed+ (525/512) *e6+(2205/2048) *e8+ (72765/65536) *el10;
(15/64) *e4+(105/256) *e6+(2205/4096) *e8+(10395/16384) *el0;

= (35/512) *e6+(315/2048) *e8+(31185/131072) *el0;

= (315/16384) *e8+(3465/65536) *el0;

(693/131072) *el10;

= HE O QW e
I

terml = A*lat;

term2 = (B/2)*sin(2*lat);
term3 = (C/4)*sin(4*lat);
term4 = (D/6)*sin(6*lat);

Loxodrome on Ellipsoid.doc
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term5 = (E/8)*sin(8*1lat);
termé6 = (F/10)*sin(10*lat);
mdist = a*(l-e2)* (terml-term2+term3-termd+termb-termo) ;

MATLAB function DMS.m

function [D,M,S] = DMS (DecDegqg)
[D,M,S] = DMS (DecDeg) This function takes an angle in decimal degrees and returns
Degrees, Minutes and Seconds

oe

oe

al = abs (DecDeg) ;

= fix(val);

= fix((val-D) *60);

= (val-D-M/60)*3600;
(

REFERENCES
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